Skip to main content

Advertisement

Log in

Forskolin Induces Hyperphosphorylation of Tau Accompanied by Cell Cycle Reactivation in Primary Hippocampal Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

An Erratum to this article was published on 07 February 2017

This article has been updated

Abstract

Abnormally hyperphosphorylated tau is the major protein constituent of neurofibrillary tangles (NFTs) in the brain of Alzheimer disease (AD) patients. Cell cycle reactivation is considered an important neuropathological feature of AD, and re-expression and activation of cell cycle regulators are known to occur in neurons containing NFTs. The aim of the present study was to investigate cell cycle reactivation during tau hyperphosphorylation in primary hippocampal neurons. We used forskolin, a specific activator of PKA, to induce tau hyperphosphorylation in cultured primary hippocampal neurons, and then measured levels of cyclin D1 and cyclin B1. We found that forskolin induced hyperphosphorylation of tau at Ser214, Ser396, and Ser202/Thr205 sites, attaining peak levels at 6, 12, and 12 h, respectively, while returning to normal levels at 24 h. Forskolin also induced a sustained cAMP elevation and PKA activation, which peaked at 6 h, in association with activation and overexpression of protein phosphatase-2A (PP-2A) at 24 h. The tau hyperphosphorylation was accompanied by increases in cyclin D1 and cyclin B1 levels; immunostaining showed overlapping distribution of hyperphosphorylated tau and cyclin D1 and cyclin B1 in primary hippocampal neurons. Forskolin induced hyperphosphorylation of tau and increased cyclin D1 and cyclin B1 protein levels in HEK293/tau441 cells, but not in the HEK293/vector cells, whereas the PKA inhibitor H89 inhibited the effects of forskolin on tau hyperphosphorylation and cyclin D1 and cyclin B1 protein levels. These findings suggest that forskolin induces tau hyperphosphorylation, which is itself necessary for the subsequent increases of cyclin D1 and cyclin B1 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 07 February 2017

    An erratum to this article has been published.

References

  1. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83(13):4913–4917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ihara Y, Nukina N, Miura R, Ogawara M (1986) Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer’s disease. J Biochem 99(6):1807–1810

    Article  CAS  PubMed  Google Scholar 

  3. Lee VM, Balin BJ, Otvos L Jr, Trojanowski JQ (1991) A68: a major subunit of paired helical filaments and derivatized forms of normal tau. Science 251(4994):675–678

    Article  CAS  PubMed  Google Scholar 

  4. Iqbal K, Liu F, Gong CX, Grundke-Iqbal I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7(8):656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khatoon S, Grundke-Iqbal I, Iqbal K (1994) Levels of normal and abnormally phosphorylated tau in different cellular and regional compartments of Alzheimer disease and control brains. FEBS Lett 351(1):80–84

    Article  CAS  PubMed  Google Scholar 

  6. Kopke E, Tung YC, Shaikh S, Alonso AC, Iqbal K, Grundke-Iqbal I (1993) Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem 268(32):24374–24384

    CAS  PubMed  Google Scholar 

  7. Iqbal K, Grundke-Iqbal I, Zaidi T, Merz PA, Wen GY, Shaikh SS, Wisniewski HM, Alafuzoff I et al (1986) Defective brain microtubule assembly in Alzheimer’s disease. Lancet 2(8504):421–426

    Article  CAS  PubMed  Google Scholar 

  8. Braak E, Braak H, Mandelkow EM (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87(6):554–567

    Article  CAS  PubMed  Google Scholar 

  9. Iqbal K, Liu F, Gong CX (2016) Tau and neurodegenerative disease: the story so far. Nat Rev Neurol 12(1):15–27. doi:10.1038/nrneurol.2015.225

    Article  CAS  PubMed  Google Scholar 

  10. Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Yardin C, Terro F (2013) Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev 12(1):289–309

    Article  CAS  PubMed  Google Scholar 

  11. Tian Q, Zhang JX, Zhang Y, Wu F, Tang Q, Wang C, Shi ZY, Zhang JH et al (2009) Biphasic effects of forskolin on tau phosphorylation and spatial memory in rats. J Alzheimers Dis 17(3):631–642. doi:10.3233/JAD-2009-1088

    Article  CAS  PubMed  Google Scholar 

  12. Liu SJ, Zhang JY, Li HL, Fang ZY, Wang Q, Deng HM, Gong CX, Grundke-Iqbal I et al (2004) Tau becomes a more favorable substrate for GSK-3 when it is prephosphorylated by PKA in rat brain. J Biol Chem 279(48):50078–50088. doi:10.1074/jbc.M406109200

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Li HL, Wang DL, Liu SJ, Wang JZ (2006) A transitory activation of protein kinase-a induces a sustained tau hyperphosphorylation at multiple sites in N2a cells-imply a new mechanism in Alzheimer pathology. J Neural Transm (Vienna) 113(10):1487–1497. doi:10.1007/s00702-005-0421-2

    Article  CAS  Google Scholar 

  14. Wang JZ, Wu Q, Smith A, Grundke-Iqbal I, Iqbal K (1998) Tau is phosphorylated by GSK-3 at several sites found in Alzheimer disease and its biological activity markedly inhibited only after it is prephosphorylated by A-kinase. FEBS Lett 436(1):28–34

    Article  CAS  PubMed  Google Scholar 

  15. Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Terro F (2013) Tau protein phosphatases in Alzheimer’s disease: the leading role of PP2A. Ageing Res Rev 12(1):39–49. doi:10.1016/j.arr.2012.06.008

    Article  CAS  PubMed  Google Scholar 

  16. Wang JZ, Liu F (2008) Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol 85(2):148–175

    Article  CAS  PubMed  Google Scholar 

  17. Tian Q, Lin ZQ, Wang XC, Chen J, Wang Q, Gong CX, Wang JZ (2004) Injection of okadaic acid into the meynert nucleus basalis of rat brain induces decreased acetylcholine level and spatial memory deficit. Neuroscience 126(2):277–284. doi:10.1016/j.neuroscience.2004.03.037

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Blanchard J, Tung YC, Grundke-Iqbal I, Iqbal K (2015) Inhibition of protein phosphatase-2A (PP2A) by I1PP2A leads to hyperphosphorylation of tau, neurodegeneration, and cognitive impairment in rats. J Alzheimers Dis 45(2):423–435. doi:10.3233/JAD-142403

    CAS  PubMed  Google Scholar 

  19. Yin YY, Liu H, Cong XB, Liu Z, Wang Q, Wang JZ, Zhu LQ (2010) Acetyl-L-carnitine attenuates okadaic acid induced tau hyperphosphorylation and spatial memory impairment in rats. J Alzheimers Dis 19(2):735–746. doi:10.3233/JAD-2010-1272

    Article  CAS  PubMed  Google Scholar 

  20. Cheng XS, Zhao KP, Jiang X, Du LL, Li XH, Ma ZW, Yao J, Luo Y et al (2013) Nmnat2 attenuates Tau phosphorylation through activation of PP2A. J Alzheimers Dis 36(1):185–195. doi:10.3233/jad-122173

    CAS  PubMed  Google Scholar 

  21. Liu GP, Wei W, Zhou X, Shi HR, Liu XH, Chai GS, Yao XQ, Zhang JY et al (2013) Silencing PP2A inhibitor by lenti-shRNA interference ameliorates neuropathologies and memory deficits in tg2576 mice. Mol Ther 21(12):2247–2257. doi:10.1038/mt.2013.189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Frade JM, Ovejero-Benito MC (2015) Neuronal cell cycle: the neuron itself and its circumstances. Cell Cycle 14(5):712–720. doi:10.1080/15384101.2015.1004937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van Leeuwen LA, Hoozemans JJ (2015) Physiological and pathophysiological functions of cell cycle proteins in post-mitotic neurons: implications for Alzheimer’s disease. Acta Neuropathol 129(4):511–525. doi:10.1007/s00401-015-1382-7

    Article  PubMed  PubMed Central  Google Scholar 

  24. Keeney JT, Swomley AM, Harris JL, Fiorini A, Mitov MI, Perluigi M, Sultana R, Butterfield DA (2012) Cell cycle proteins in brain in mild cognitive impairment: insights into progression to Alzheimer disease. Neurotox Res 22(3):220–230. doi:10.1007/s12640-011-9287-2

    Article  CAS  PubMed  Google Scholar 

  25. Bonda DJ, Lee HP, Kudo W, Zhu X, Smith MA, Lee HG (2010) Pathological implications of cell cycle re-entry in Alzheimer disease. Expert Rev Mol Med 12:e19. doi:10.1017/S146239941000150X

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhu X, Lee HG, Perry G, Smith MA (2007) Alzheimer disease, the two-hit hypothesis: an update. Biochim Biophys Acta 1772(4):494–502. doi:10.1016/j.bbadis.2006.10.014

    Article  CAS  PubMed  Google Scholar 

  27. Ahn KW, Joo Y, Choi Y, Kim M, Lee SH, Cha SH, Suh YH, Kim HS (2008) Swedish amyloid precursor protein mutation increases cell cycle-related proteins in vitro and in vivo. J Neurosci Res 86(11):2476–2487. doi:10.1002/jnr.21690

    Article  CAS  PubMed  Google Scholar 

  28. Li HL, Wang HH, Liu SJ, Deng YQ, Zhang YJ, Tian Q, Wang XC, Chen XQ et al (2007) Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer’s neurodegeneration. Proc Natl Acad Sci U S A 104(9):3591–3596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rodriguez G, Ross JA, Nagy ZS, Kirken RA (2013) Forskolin-inducible cAMP pathway negatively regulates T-cell proliferation by uncoupling the interleukin-2 receptor complex. J Biol Chem 288(10):7137–7146. doi:10.1074/jbc.M112.408765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sontag JM, Sontag E (2014) Protein phosphatase 2A dysfunction in Alzheimer’s disease. Front Mol Neurosci 7(16). doi:10.3389/fnmol.2014.00016

  31. Vandamme J, Castermans D, Thevelein JM (2012) Molecular mechanisms of feedback inhibition of protein kinase A on intracellular cAMP accumulation. Cell Signal 24(8):1610–1618. doi:10.1016/j.cellsig.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  32. Itoh Y, Sanosaka M, Fuchino H, Yahara Y, Kumagai A, Takemoto D, Kagawa M, Doi J et al (2015) Salt-inducible kinase 3 signaling is important for the gluconeogenic programs in mouse hepatocytes. J Biol Chem 290(29):17879–17893. doi:10.1074/jbc.M115.640821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Malm HA, Mollet IG, Berggreen C, Orho-Melander M, Esguerra JL, Goransson O, Eliasson L (2016) Transcriptional regulation of the miR-212/miR-132 cluster in insulin-secreting beta-cells by cAMP-regulated transcriptional co-activator 1 and salt-inducible kinases. Mol Cell Endocrinol 424:23–33. doi:10.1016/j.mce.2016.01.010

    Article  CAS  PubMed  Google Scholar 

  34. Sontag JM, Sontag E (2014) Protein phosphatase 2A dysfunction in Alzheimer’s disease. Front Mol Neurosci 7:16. doi:10.3389/fnmol.2014.00016

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ahn JH, McAvoy T, Rakhilin SV, Nishi A, Greengard P, Nairn AC (2007) Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56delta subunit. Proc Natl Acad Sci U S A 104(8):2979–2984. doi:10.1073/pnas.0611532104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Usui H, Inoue R, Tanabe O, Nishito Y, Shimizu M, Hayashi H, Kagamiyama H, Takeda M (1998) Activation of protein phosphatase 2A by cAMP-dependent protein kinase-catalyzed phosphorylation of the 74-kDa B″ (delta) regulatory subunit in vitro and identification of the phosphorylation sites. FEBS Lett 430(3):312–316

    Article  CAS  PubMed  Google Scholar 

  37. Feschenko MS, Stevenson E, Nairn AC, Sweadner KJ (2002) A novel cAMP-stimulated pathway in protein phosphatase 2A activation. J Pharmacol Exp Ther 302(1):111–118

    Article  CAS  PubMed  Google Scholar 

  38. Li M, Wang X, Meintzer MK, Laessig T, Birnbaum MJ, Heidenreich KA (2000) Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3beta. Mol Cell Biol 20(24):9356–9363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Park CH, Moon Y, Shin CM, Chung JH (2010) Cyclic AMP suppresses matrix metalloproteinase-1 expression through inhibition of MAPK and GSK-3beta. J Invest Dermatol 130(8):2049–2056. doi:10.1038/jid.2010.62

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported in part by grants from the National Natural Science Foundation of China (81572222 and 30900725) and Guangdong Provincial Natural Science Foundation (2014A030313333 and 8151051501000005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Ren Dong or Lin Zhang.

Ethics declarations

This study using primary cell culture met all institution and national standards for experimental ethics.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s12035-017-0415-8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HH., Li, Y., Li, A. et al. Forskolin Induces Hyperphosphorylation of Tau Accompanied by Cell Cycle Reactivation in Primary Hippocampal Neurons. Mol Neurobiol 55, 696–706 (2018). https://doi.org/10.1007/s12035-016-0348-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0348-7

Keywords

Navigation