Skip to main content
Log in

Polyclonal antibodies against NCAM reduce paralysis-induced axonal sprouting

  • Published:
Journal of Neurocytology

Abstract

The neural cell adhesion molecule (NCAM) is upregulated in paralyzed muscles but the functional role of this upregulation is not clear. We have investigated the possible involvement of NCAM in botulinum toxin-induced axonal sprouting in mouse soleus muscles. Starting 4 days after botulinum toxin-A injection, the paralyzed muscles were exposed daily for 6 or 10 days to either rabbit polyclonal NCAM antibody or control solutions (preimmune serum or saline) or remained without further treatment. By 10 days after botulinum toxin injection, the mean number of sprouts and the mean total length of sprouts, respectively, in zinc iodide<@150>osmium-stained preparations were 2.2 and 212 μm in untreated and control treated muscles but 1.0 and 51 μm in anti-NCAM treated muscles. By 14 days, the mean number of sprouts rose to 2.9 in untreated muscles but only 1.6 in anti-NCAM treated muscles. Macrophages/monocytes, probably originating from neighboring tissue damaged by the daily injections, were present in muscles of all groups. No T lymphocytes and no signs of muscle fiber damage were found, however, rendering antibody-mediated cytotoxic reactions as unlikely. From the blocking effects of anti-NCAM, it is concluded that NCAM plays a major role in the growth of paralysis-induced axonal sprouts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akert, K. & Sandri, C. (1968) An electron-microscopic study of zinc iodide–osmium impregnation of neurons.I. Staining of synaptic vesicles at cholinergic junctions.Brain Research 7, 286–95.

    Article  CAS  PubMed  Google Scholar 

  • Angaut-Petit, D., Molgo, J., Comella, J.X., Faille, L. & Tabti, N. (1990) Terminal sprouting in mouse neuromuscular junctions poisoned with botulinum type A toxin: morphological and electrophysiological features. Neuroscience 37, 799–808.

    Article  CAS  PubMed  Google Scholar 

  • Barthels, D., Santoni, M.J., Wille, W., Ruppert, C., Chaix, J. C., Hirsch, M.R., Fontecilla-Camps, J.C. & Goridis, C. (1987) Isolation and nucleotide sequence of mouse NCAM cDNA that codes for a Mr 79,000 polypeptide without a membrane-spanning region. EMBO Journal 6, 907–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bixby, J.L., Pratt, R.S., Lilien, J. & Reichardt, L.F. (1987) Neurite outgrowth on muscle cell surfaces involves extracellular matrix receptors as well as Ca2+-dependent and-independent cell adhesion molecules.Proceedings of the National Academy of Sciences USA 84, 2555–9.

    Article  CAS  Google Scholar 

  • Blasi, J., Chapman, E.R., Link, E., Binz, T., Yamasaki, S., Decamilli, P., Sudhof, T.C., Niemann, H. & Jahn, R. (1993) Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25.Nature 365, 160–3.

    Article  CAS  PubMed  Google Scholar 

  • Booth, C.M. & Brown, M.C. (1988) Localization of neural cell adhesion molecule in denervated muscle to both the plasma membrane and extracellular compartments by immuno-electron microscopy. Neuroscience 27, 699–709.

    Article  CAS  PubMed  Google Scholar 

  • Booth, C.M., Kemplay, S.K. & Brown, M.C. (1990) An antibody to neural cell adhesion molecule impairs motor nerve terminal sprouting in a mouse muscle locally paralysed with botulinum toxin. Neuroscience 35, 85–91.

    Article  CAS  PubMed  Google Scholar 

  • Brown, M.C., Holland, R.L. & Hopkins, W.G. (1981) Motor nerve sprouting. Annual Review of Neuroscience 4, 17–42.

    Article  CAS  PubMed  Google Scholar 

  • Brown, M.C., Hopkins, W.G., Keynes, R.J. & White, I. (1982) A comparison of early morphological changes at denervated and paralyzed endplates in fast and slow muscles of the mouse. Brain Research 248, 382–6.

    Article  CAS  PubMed  Google Scholar 

  • Cifuentes-Diaz, C., Velasco, E., Meunier, F.A., Goudou, D., Belkadi, L., Faille, L., Murawsky, M., Angaut-Petit, D., Molgo, J., Schachner, M., Saga, Y., Aizawa, S. & Rieger, F. (1998) The peripheral nerve and the neuromuscular junction are affected in the tenascin-C-deficient mouse. Cellular and Molecular Biology 44, 357–79.

    CAS  PubMed  Google Scholar 

  • Comella, J.X., Molgo, J. & Faille, L. (1993) Sprouting of mammalian motor nerve terminals induced by in vivo injection of botulinum type-D toxin and the functional recovery of paralysed neuromuscular junctions.Neuroscience Letters 153, 61–4.

    Article  CAS  PubMed  Google Scholar 

  • Covault, J., Cunningham, J.M. & Sanes, J.R. (1987) Neurite outgrowth on cryostat sections of innervated and denervated skeletal muscle. Journal of Cell Biology 105, 2479–88.

    Article  CAS  PubMed  Google Scholar 

  • Covault, J. & Sanes, J.R. (1985) Neural cell adhesion molecule (N-CAM) accumulates in denervated and paralyzed skeletal muscles. Proceedings of the National Academy of Sciences USA 82, 4544–8.

    Article  CAS  Google Scholar 

  • Covault, J. & Sanes, J.R. (1986) Distribution of NCAM in synaptic and extrasynaptic portions of developing and adult skeletal muscle. Journal of Cell Biology 102, 716–30.

    Article  CAS  PubMed  Google Scholar 

  • Cremer, H., Chazal, G., Goridis, C. & Represa, A. (1997) NCAM is essential for axonal growth and fasciculation in the hippocampus. Molecular and Cellular Neuroscience 8, 323–35.

    Article  CAS  PubMed  Google Scholar 

  • Cremer, H., Lange, R., Christoph, A., Plomann, M., Vopper, G., Roes, J., Brown, R., Baldwin, S., Kraemer, P., Scheff, S., Barthels, D., Rajewsky, K. & Wille, W. (1994) Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367, 455–9.

    Article  CAS  PubMed  Google Scholar 

  • Daniloff, J.K., Levi, G., Grumet, M., Rieger, F. & Edelman, G.M. (1986) Altered expression of neuronal cell adhesion molecules induced by nerve injury and repair. Journal of Cell Biology 103, 929–45.

    Article  CAS  PubMed  Google Scholar 

  • Desypris, G. & Parry, D.J. (1990) Relative efficacy of slow and fast alpha-motoneurons to reinnervate mouse soleus muscle. American Journal of Physiology 258, C62–70.

    Article  CAS  PubMed  Google Scholar 

  • Dialynas, D.P., Quan, Z.S., Wall, K.A., Pierres, A., Quintans, J., Loken, M.R., Pierres, M. & Fitch, F.W. (1983) Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule. Journal of Immunology 131, 2445–51.

    CAS  Google Scholar 

  • Doherty, P., Fazeli, M.S. & Walsh, F.S. (1995) The neural cell adhesion molecule and synaptic plasticity.Journal of Neurobiology 26, 437–46.

    Article  CAS  PubMed  Google Scholar 

  • Doherty, P. & Walsh, F.S. (1996) CAM-FGF receptor interactions: a model for axonal growth. Molecular and Cellular Neuroscience 8, 99–111.

    Article  CAS  PubMed  Google Scholar 

  • Duchen, L.W. (1970) Changes in motor innervation and cholinesterase localization induced by botulinum toxin in skeletal muscle of the mouse: differences between fast and slow muscles. Journal of Neurology, Neurosurgery and Psychiatry 33, 40–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duchen, L.W. (1971) An electron microscopic study of the changes induced by botulinum toxin in the motor endplates of slow and fast skeletal muscle fibres of the mouse. Journal of the Neurological Sciences 14, 47–60.

    Article  CAS  PubMed  Google Scholar 

  • Fields, R.D. & Itoh, K. (1996) Neural cell adhesion molecules in activity-dependent development and synaptic plasticity. Trends in Neurosciences 19, 473–80.

    Article  CAS  PubMed  Google Scholar 

  • Fu, S.Y. & Gordon, T. (1997) The cellular and molecular basis of peripheral nerve regeneration. Molecular Neurobiology 14, 67–116.

    Article  CAS  PubMed  Google Scholar 

  • Grinnell, A.D. (1995) Dynamics of nerve–muscle interaction in developing and mature neuromuscular junctions.Physiological Reviews 75, 789–834.

    Article  CAS  PubMed  Google Scholar 

  • Habermann, E. & Dreyer, F. (1986) Clostridial neurotoxins: handling and action at the cellular and molecular level. Current Topics in Microbiology and Immunology 129, 93–179.

    CAS  PubMed  Google Scholar 

  • Hassan, S.M., Jennekens, F.G., Wieneke, G. & Veldman, H. (1994) Elimination of superfluous neuromuscular junctions in rat calf muscles recovering from botulinum toxin-induced paralysis. Muscle and Nerve 17, 623–31.

    Article  CAS  PubMed  Google Scholar 

  • Holland, R.L. & Brown, M.C. (1980) Postsynaptic transmission block can cause terminal sprouting of a motor nerve. Science 207, 649–51.

    Article  CAS  PubMed  Google Scholar 

  • Honig, M.G. & Kueter, J. (1995) The expression of cell adhesion molecules on the growth cones of chick cutaneous and muscle sensory neurons. Developmental Biology 167, 563–83.

    Article  CAS  PubMed  Google Scholar 

  • Irintchev, A., Draguhn, A. & Wernig, A. (1990) Reinnervation and recovery of mouse soleus muscle after long-term denervation. Neuroscience 39, 231–43.

    Article  CAS  PubMed  Google Scholar 

  • Irintchev, A., Salvini, T.F., Faissner, A. & Wernig, A. (1993) Differential expression of tenascin after denervation, damage or paralysis of mouse soleus muscle. Journal of Neurocytology 22, 955–65.

    Article  CAS  PubMed  Google Scholar 

  • Irintchev, A., Zeschnigk, M., Starzinski-Powitz, A. & Wernig, A. (1994) Expression pattern of M-cadherin in normal, denervated, and regenerating mouse muscles. Developmental Dynamics 199, 326–37.

    Article  CAS  PubMed  Google Scholar 

  • Irintchev, A., Zweyer, M. & Wernig, A. (1995) Cellular and molecular reactions in mouse muscles after myoblast implantation. Journal of Neurocytology 24, 319–31.

    Article  CAS  PubMed  Google Scholar 

  • JÖrgensen, O. S. (1995) Neural cell adhesion molecule (NCAM) as a quantitative marker in synaptic remodeling.Neurochemical Research 20, 533–47.

    Article  PubMed  Google Scholar 

  • Juzans, P., Comella, J.X., Molgo, J., Faille, L. & Angaut-Petit, D. (1996) Nerve terminal sprouting in botulinum type-A treated mouse levator auris longus muscle. Neuromuscular Disorders 6, 177–85.

    Article  CAS  PubMed  Google Scholar 

  • Ko, C.P. & Chen, L. (1996) Synaptic remodeling revealed by repeated in vivo observations and electron microscopy of identified frog neuromuscular junctions. Journal of Neuroscience 16, 1780–90.

    Article  CAS  PubMed  Google Scholar 

  • Landmesser, L., Dahm, L., Schultz, K. & Rutishauser, U. (1988) Distinct roles for adhesion molecules during innervation of embryonic chick muscle.Developmental Biology 130, 645–70.

    Article  CAS  PubMed  Google Scholar 

  • Landmesser, L., Dahm, L., Tang, J.C. & Rutishauser, U. (1990) Polysialic acid as a regulator of intramuscular nerve branching during embryonic development.Neuron 4, 655–67.

    Article  CAS  PubMed  Google Scholar 

  • Langenfeld-Oster, B., DorlÖchter, M. & Wernig, A. (1993) Regular and photodamage-enhanced remodelling in vitally stained frog and mouse neuromuscular junctions. Journal of Neurocytology 22, 517–30.

    Article  CAS  PubMed  Google Scholar 

  • Langenfeld-Oster, B., Faissner, A., Irintchev, A. & Wernig, A. (1994) Polyclonal antibodies against NCAM and tenascin delay endplate reinnervation.Journal of Neurocytology 23, 591–604.

    Article  CAS  PubMed  Google Scholar 

  • Ledbetter, J.A. & Herzenberg, L.A. (1979) Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunological Reviews 47, 63–90.

    Article  CAS  PubMed  Google Scholar 

  • Lojda, Z., Gossrau, R. & Schiebler, T.H. (1976) Enzymhistochemische Methoden. Berlin, Heidelberg, New York: Springer-Verlag.

    Book  Google Scholar 

  • Maillet, M. (1962) La téchnique de Champy à l′osmiumioduré de potassium et la modification de Maillet à l′osmium-ioduré de zinc. Trabajos del Instituto Cajal de Investigationes Biologicas 54, 1–36.

    CAS  Google Scholar 

  • Martini, R. (1994) Expression and functional roles of neural cell surface molecules and extracellular matrix components during development and regeneration of peripheral nerves. Journal of Neurocytology 23, 1–28.

    Article  CAS  PubMed  Google Scholar 

  • Martini, R. & Schachner, M. (1988) Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and myelin-associated glycoprotein) in regenerating adult mouse sciatic nerve. Journal of Cell Biology 106, 1735–46.

    Article  CAS  PubMed  Google Scholar 

  • Montecucco, C. & Schiavo, G. (1995) Structure and function of tetanus and botulinum neurotoxins.Quarterly Reviews of Biophysics 28, 423–72.

    Article  CAS  PubMed  Google Scholar 

  • Moore, S.E. & Walsh, F.S. (1986) Nerve dependent regulation of neural cell adhesion molecule expression in skeletal muscle. Neuroscience 18, 499–505.

    Article  CAS  PubMed  Google Scholar 

  • Moscoso, L.M., Cremer, H. & Sanes, J.R. (1998) Organization and reorganization of neuromuscular junctions in mice lacking neural cell adhesion molecule, tenascin-C, or fibroblast growth factor-5. Journal of Neuroscience 18, 1465–77.

    Article  CAS  PubMed  Google Scholar 

  • Ravdin, P. & Axelrod, D. (1977) Fluorescent tetramethyl rhodamine derivatives of alpha-bungarotoxin: preparation, separation, and characterization. Analytical Biochemistry 80, 585–92.

    Article  CAS  PubMed  Google Scholar 

  • Rieger, F., Grumet, M. & Edelman, G.M. (1985) N-CAM at the vertebrate neuromuscular junction. Journal of Cell Biology 101, 285–93.

    Article  CAS  PubMed  Google Scholar 

  • Rieger, F., Nicolet, M., Pincon-Raymond, M., Murawsky, M., Levi, G. & Edelman, G.M. (1988) Distribution and role in regeneration of N-CAM in the basal laminae of muscle and Schwann cells. Journal of Cell Biology 107, 707–19.

    Article  CAS  PubMed  Google Scholar 

  • Saffell, J.L., Doherty, P., Tiveron, M.C., Morris, R.J. & Walsh, F.S. (1995) NCAM requires a cytoplasmic domain to function as a neurite outgrowth-promoting neuronal receptor. Molecular and Cellular Neuroscience 6, 521–31.

    Article  CAS  PubMed  Google Scholar 

  • Saffell, J.L., Williams, E.J., Mason, I.J., Walsh, F.S. & Doherty, P. (1997) Expression of a dominant negative FGF receptor inhibits axonal growth and FGF receptor phosphorylation stimulated by CAMs.Neuron 18, 231–42.

    Article  CAS  PubMed  Google Scholar 

  • Sandig, M., Rao, Y. & Siu, C.H. (1994) The homophilic binding site of the neural cell adhesion molecule NCAM is directly involved in promoting neurite outgrowth from cultured neural retinal cells. Journal of Biological Chemistry 269, 1481–8.

    Article  Google Scholar 

  • Sanes, J.R., Schachner, M. & Covault, J. (1986) Expression of several adhesive macromolecules (NCAM, L1, J1, NILE, uvomorulin, laminin, fibronectin, and a heparan sulfate proteoglycan) in embryonic, adult, and denervated adult skeletal muscle. Journal of Cell Biology 102, 420–31.

    Article  CAS  PubMed  Google Scholar 

  • Santoni, M.J., Barthels, D., Vopper, G., Boned, A., Goridis, C. & Wille, W. (1989) Differential exon usage involving an unusual splicing mechanism generates at least eight types of NCAM cDNA in mouse brain. EMBO Journal 8, 385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skene, J.H. (1989) Axonal growth-associated proteins. Annual Review of Neuroscience 12, 127–56.

    Article  CAS  PubMed  Google Scholar 

  • Son, Y.J. & Thompson, W.J. (1995a) Nerve sprouting in muscle is induced and guided by processes extended by Schwann cells. Neuron 14, 133–41.

    Article  CAS  PubMed  Google Scholar 

  • Son, Y.J. & Thompson, W.J. (1995b) Schwann cell processes guide regeneration of peripheral axons. Neuron 14, 125–32.

    Article  CAS  PubMed  Google Scholar 

  • Son, Y.J., Trachtenberg, J T. & Thompson, W.J. (1996) Schwann cells induce and guide sprouting and reinnervation of neuromuscular junctions. Trends in Neurosciences 19, 280–85.

    Article  CAS  PubMed  Google Scholar 

  • Tang, J., Landmesser, L. & Rutishauser, U. (1992) Polysialic acid influences specific pathfinding by avian motoneurons. Neuron 8, 1031–44.

    Article  CAS  PubMed  Google Scholar 

  • Tessier-Lavigne, M. & Goodman, C.S. (1996) The molecular biology of axon guidance. Science 274, 1123–33.

    Article  CAS  PubMed  Google Scholar 

  • Tomaselli, K.J. & Reichardt, L.F. (1989) Integrins, cadherins, and cell adhesion molecules of the immunoglobulin superfamily: neuronal receptors that regulate axon growth and guidance. In: The Assembly of the Nervous System (edited by Landmesser, L.), pp. 81–108.New York: Alan R. Liss, Inc.

    Google Scholar 

  • Vogt, L., Giger, R.J., Ziegler, U., Kunz, B., Buchstaller, A., Hermens, W.T.J.M.C., Kaplitt, M.G., Rosenfeld, M.R., Pfaff, D.W., Verhaagen, J. & Sonderegger, P. (1996) Continuous renewal of the axonal pathway sensor apparatus by insertion of new sensor molecules into the growth cone membrane. Current Biology 6, 1153–8.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, F.S. & Doherty, P. (1996) Cell adhesion molecules and neuronal regeneration. Current Opinion in Cell Biology 8, 707–13.

    Article  CAS  PubMed  Google Scholar 

  • Wernig, A., Carmody, J.J., Anzil, A.P., Hansert, E., Marciniak, M. & Zucker, H. (1984) Persistence of nerve sprouting with features of synapse remodelling in soleus muscles of adult mice. Neuroscience 11, 241–53.

    Article  CAS  PubMed  Google Scholar 

  • Wernig, A. & Herrera, A.A. (1986) Sprouting and remodelling at the nerve-muscle junction. Progress in Neurobiology 27, 251–91.

    Article  CAS  PubMed  Google Scholar 

  • Wernig, A., Irintchev, A., HÄrtling, A., Stephan, G., Zimmermann, K. & Starzinski-Powitz, A. (1991a) Formation of new muscle fibres and tumours after injection of cultured myogenic cells. Journal of Neurocytology 20, 982–97.

    Article  CAS  PubMed  Google Scholar 

  • Wernig, A., Irintchev, A. & Weisshaupt, P. (1990) Muscle injury, cross-sectional area and fibre type distribution in mouse soleus after intermittent wheel-running.Journal of Physiology London 428, 639–52.

    Article  CAS  Google Scholar 

  • Wernig, A., Pecot-Dechavassine, M. & StÖover, H. (1980) Sprouting and regression of the nerve at the frog neuromuscular junction in normal conditions and after prolonged paralysis with curare. Journal of Neurocytology 9, 278–303.

    Article  CAS  PubMed  Google Scholar 

  • Wernig, A., Salvini, T.F. & Irintchev, A. (1991b) Axonal sprouting and changes in fibre types after running-induced muscle damage. Journal of Neurocytology 20, 903–13.

    Article  CAS  PubMed  Google Scholar 

  • Williams, E.J., Furness, J., Walsh, F.S. & Doherty, P. (1994) Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron 13, 583–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäfer, R., Wernig, A. Polyclonal antibodies against NCAM reduce paralysis-induced axonal sprouting. J Neurocytol 27, 615–624 (1998). https://doi.org/10.1023/A:1006978429608

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006978429608

Keywords

Navigation