Skip to main content
Log in

Depolymerization of Polyethylene Using Induction-Coupled Plasma Technology

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A significant, valuable percentage of today's municipal solid wastestream consists of polymeric materials, for which almost no economicrecycling technology currently exists. This polymeric waste is incinerated,landfilled, or recycled via downgraded usage. Thermal plasma treatment is apotentially viable means of recycling these materials by converting themback into monomers or into other useful compounds. The technical, laboratoryscale, feasibility of using an induction-coupled RF plasma (ICP) heatedreactor for this purpose has been demonstrated in the presentstudy. Polyethylene powder was injected axially through the center of anICP torch. Results from the initial set of experiments, analyzed using astatistical design of experiment technique, showed that plasma plate power,central gas flow rate, probe gas flow rate, powder feed rate, and theinteraction between the quench gas flow rate and power input were the keyprocess parameters affecting the yield of ethylene in the product gasstream. The gaseous products obtained were mainly mixtures of ethylene andpropylene. The amount of propylene obtained was significantly higher thananticipated and was believed to be due to β-scission reactionsoccurring at the higher plasma temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Environmental Protection Agency, “Characterization of Municipal Solid Waste: 1997 Update,” EPA Report 530-R-98-007, May, Franklin Assoc. Ltd., Prairie Village, Kansas (1998).

    Google Scholar 

  2. R. W. J. Westerhout, J. Waanders, J. A. M. Kuipers, and W. P. M. Van Swaaji, “Kinetics of the low-temperature pyrolysis of polyethylene, polypropylene and polystyrene modeling, experimental determination, and comparison with literature models and data, “Ind. Eng. Chem. Res. 36, 1955–1964 (1997).

    Google Scholar 

  3. J. A. Conesa, R. Font, A. Marcilla, and A. N. Garcia, “Pyrolysis of polyethylene in a fluidized bed reactor,” Energy Fuels 8, 1238–1246 (1994).

    Google Scholar 

  4. G. S. Darivakis, J. B. Howard, and W. A. Peters, “Release rates of condensables and total volatiles from rapid devolatilization of polyethylene and polystyrene,” Combust. Sci. Tech. 74, 267–281 (1990).

    Google Scholar 

  5. P. Fauchais, J. F. Coudert, and B. Pateryron, “Production of thermal plasmas,” in Thermal Plasmas for Hazardous Waste Treatment, R. Benocci, G. Bonizzoni, and E. Sindoni, eds. World Scientific, Singapore (1996), pp. 1–38.

    Google Scholar 

  6. R. W. Smith, R. Mutharasan, R. Knight, D. Luu, K. Malladi, J. Serino, J. Vavruska, J. Persoon, and S. Garrison, “Plasma energy recycle and conversion (PERC) of hazardous waste materials,” Proc. 3rd Euro. Congr. Thermal Plasma Process (TPP-3), VDI, Aachen, Germany, 19–21 Sept. (1994), pp. 667–674.

    Google Scholar 

  7. W. A. Huhn, H. R. Zwi, A. Lynn, R. D. Dickman, A. Wong, C. Behr-Andres, and E. Hemmick, “Radio frequency plasma treatment of organic waste,” Pract. Period. Hazardous, Toxic Radioactive Waste Management, July, (1997), pp. 107–112.

  8. B. C. Stratton, R. Knight, and D. R. Mikkelsen, A. Blutker, and J. Vavruska, “Synthesis of ozone at atmospheric pressure by a quenched induction-coupled plasma torch,” Plasma Chem. Plasma Process. 19, 191–216 (1999).

    Google Scholar 

  9. M. I. Boulos, “Induction plasma process for material synthesis and waste treatment,” Proc. Workshop Ind. Appl. Plasma Chem., Proc. 12th Intern. Symp. Plasma Chem. (ISPC-12), IUPAC, Vol. B, Thermal Plasma Applications, Minneapolis, Minnesota, 25–26 Aug. (1995), pp. 89–95.

    Google Scholar 

  10. M. I. Boulos, “Thermal plasma processing,” IEEE Trans. Plasma Sci. 19, 1078–1089 (1991).

    Google Scholar 

  11. J. E. Goodwill and R. J. Schmitt, “Plasma arc technology for waste treatment in the metals industry,” Proc. Workshop Plasma Arc Technology, Current Practices for Waste Treatment: An Information Exchange, October, CTC, Alexandria, Virginia (1996), pp. 176–194.

    Google Scholar 

  12. G. J. Hanus, “Phoenix Solutions' plasma arc application and high-temperature process experience,” Workshop Plasma Arc Technology, Current Practices for Waste Treatment: An Information Exchange, October, CTC, Alexandria, Virginia (1996), pp. 323–351.

    Google Scholar 

  13. D. L. Cheek, T. N. Mustoe, and T. D. Smith, “Commercial development of plasma technology: PEC's experience,” Suppl. Proc. Workshop Plasma Arc Technology, Current Practices for Waste Treatment: An Information Exchange, October, CTC, Alexandria, Virginia (1996), pp. 53–74.

    Google Scholar 

  14. R. C. Eschenbach, R. E. Haun, and M. W. Shuey, “Plasma arc centrifugal treatment of hazardous waste,” Proc. Workshop Plasma Arc Technology, Current Practices for Waste Treatment: An Information Exchange, October, CTC, Alexandria, Virginia (1996), pp. 196–205.

    Google Scholar 

  15. C. D. Chapman, C. P. Heanley, and C. J. Wolff, “Plasma arc treatment of waste materials,” Proc. Workshop Plasma Arc Technology, Current Practices for Waste Treatment: An Information Exchange, October, CTC, Alexandria, Virginia (1996), pp. 264–276.

    Google Scholar 

  16. C. Moreau, P. Gougeon, A. Burgess, and D. Ross, “Characterization of particle flows in an axial injection plasma torch,” Proc. 8th Natl. Thermal Spray Conf., September, ASM International, Houston, Texas (1995), pp. 141–147.

    Google Scholar 

  17. L. B. Delcea and M. Sexsmith, “Axial injection of powders in plasma spraying, theory, methods, and advantages,” Proc. 9th Natl. Thermal Spray Conf., October, ASM International, Cincinnati, Ohio (1996), p. 957.

    Google Scholar 

  18. S. F. Paul, “Review of thermal plasma research and development for hazardous waste remediation in the United States,” in Thermal Plasmas for Hazardous Waste Treatment, R. Benocci, G. Bonizzoni, and E. Sindoni, eds., World Scientific, Singapore (1996), pp. 67–92.

    Google Scholar 

  19. M. I. Boulos, “New frontiers in thermal plasma processing,” Pure Appl. Chem, 68, 1007–1010 (1996).

    Google Scholar 

  20. R. W. Tock and D. Ethington, “Transfer plasmas destroy PCB fluids,” Chem. Eng. Comm., 71, 177–187 (1988).

    Google Scholar 

  21. Q. Y. Han, J. Heberlein, and E. Pfender, “Feasibility study of thermal plasma destruction of toxic wastes in a counterflow liquid injection plasma reactor,” J. Mater. Synth. Process. 1, 25–32 (1993).

    Google Scholar 

  22. J. Lachmann, I. Borger, and R. Kleffe, “Decomposition of chlorinated and fluorinated hydrocarbons in plasma jets,” Proc. 3rd Europ. Congr. Thermal Plasma Process (TPP-3), 19–21 September, VDI, Aachen, Germany, (1994), pp. 591–597.

    Google Scholar 

  23. A. Mosse and G. Kusnetzov, “Conversion of liquid toxic waste by means of plasma reactor,” Proc. 3rd Europ. Congr. Thermal Plasma Process (TPP-3), 19–21 September, VDI, Aachen, Germany (1994), pp. 651–657.

    Google Scholar 

  24. F. W. Breitbarth, D. Berg, K. Dumhe, and H. J. Tiller, “Investigation of the low-pressure plasma chemical conversion of fluorocarbon waste gas,” Plasma Chem. Plasma Proc. 17, 39–57 (1997).

    Google Scholar 

  25. H. Sekiguchi, T. Honda, and A. Kanzawa, “Thermal plasma decomposition of chloro-fluorocarbons,” Plasma Chem. Plasma Proc. 13, 463–478 (1993).

    Google Scholar 

  26. R. W. Montgomery, “Experience in the use of electrical discharges for the treatment of dusts arising in the steel industry,” Proc. 11th Intern. Symp. Plasma Chem. (ISPC-11), IUPAC, Vol. 2, 22–27 August, Loughborough, UK (1993), pp. 526–530.

    Google Scholar 

  27. P. R. Taylor and S. A. Pirzada, “Thermal plasma processing of materials: A review,” Adv. Perform. Mater. 1, 35–50 (1994).

    Google Scholar 

  28. W. Hoffelner and M. R. Fünfschilling, “Plasma waste treatment systems and processes,” Proc. Workshop Ind. Appl. Plasma Chem., 12th Intern. Symp. Plasma Chem. (ISPC-12), IUPAC, Vol. B, Thermal Plasma Applications, 25–26 August, Minneapolis, Minnesota, (1995), pp. 3–7.

    Google Scholar 

  29. C. Girold, R. Cartier, J. P. Taupiac, C. Vandensteendam, J. M. Baronet, and T. Flament, “Arc plasma incineration of surrogate radioactive wastes,” in Thermal Plasmas for Hazardous Waste Treatment, R. Benocci, G. Bonizzoni, and E. Sindoni, eds., World Scientific, Singapore (1996), pp. 160–168.

    Google Scholar 

  30. R. J. Munz and G. Q. Chen, “Vitrification of nuclear waste in a transferred-arc plasma melter,” J. Nucl. Mater. 161, 140–147 (1989).

    Google Scholar 

  31. W. Hoffelner, T. Müller, M. R. Fünfschilling, A. Jacobi, R. C. Eschenbach, H. R. Lutz, and C. Vuilleumier, “New incineration and melting facility for treatment of low level radioactive wastes in Switzerland,” in Thermal Plasmas for Hazardous Waste Treatment, R. Benocci, G. Bonizzoni, and E. Sindoni, eds., World Scientific, Singapore (1996), pp. 126–145.

    Google Scholar 

  32. R. W. Smith, R. Mutharasan, R. Knight, D. Luu, K. Malladi, J. Serino, J. Vavruska, J. Persoon, and S. Garrison, “Induction coupled plasma energy recycle and conversion (PERC) of military waste,” Proc. 12th Intern. Symp. Plasma Chem. (ISPC-12), IUPAC, Vol. II, paper 1.06, 21–25 August, Minneapolis, Minnesota (1995), pp. 1057–1062.

    Google Scholar 

  33. J. H. Flynn and R. E. Florin, “Degradation and pyrolysis mechanisms,” in Pyrolysis and GC in Polymer Analysis, S. A. Liebman and E. J. Levy, eds., Marcel Dekker, New York (1985), pp. 149–208.

    Google Scholar 

  34. L. F. Albright, B. L. Crynes, and W. H. Corcoran, eds., Pyrolysis: Theory and Industrial Practice, Academic Press, New York (1983).

    Google Scholar 

  35. Z. Renjun, Fundamentals of Pyrolysis in Petrochemistry and Technology, CITIC, Beijing (1993).

    Google Scholar 

  36. Thermochemical Calculator: http:yyadam.caltech.eduytccy

  37. G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building, Wiley, New York (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guddeti, R.R., Knight, R. & Grossmann, E.D. Depolymerization of Polyethylene Using Induction-Coupled Plasma Technology. Plasma Chemistry and Plasma Processing 20, 37–64 (2000). https://doi.org/10.1023/A:1006969710410

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006969710410

Navigation