Skip to main content
Log in

FDTD analysis of PBG waveguides, power splitters and switches

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Finite two-dimensional photonic bandgap (PBG) structures were analyzed with a finite-difference time-domain (FDTD) full wave, vector Maxwell equation simulator. Removal of particular portions of these PBG structures lead to interesting sub-micron-sized waveguiding environments. Several waveguides and power dividers were designed and evaluated. By introducing further defects into the PBG waveguiding structures, control of the flow of electromagnetic energy in these nanometer-sized waveguides can be affected. This effect is demonstrated, and its use to achieve a micron-sized waveguide switch is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berenger, J.-P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comp. Phys. 114 185–200, 1994.

    Google Scholar 

  • D'Urso, B., O. Painter, A. Yariv and A. Scherer. Membrane microresonator lasers with 2-D photonic bandgap crystal mirrors for compact in-plane optics. In Integrated Photonics Research, Vol. 4, 181–183. OSA Technical Digest Series, Optical Society of America, Washington, DC, 1998.

    Google Scholar 

  • Foresi, J.S., P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith and E.P. Ippen. Photonic-bandgap microcavities in optical waveguides. Nature 390 (6656) 143–145, 1997.

    Google Scholar 

  • Joannopoulos, J.D., R.D. Meade, and J.N. Winn. Photonics Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, 1995.

    Google Scholar 

  • Judkins, J.B. and R.W. Ziolkowski. FDTD Modeling of nonperfect metallic thin film gratings. J. Opt. Soc. Am. A 12(9) 1974–dy1983, 1995.

    Google Scholar 

  • Kawakami, S. Fabrication processes for 3D periodic nanostructures and photonic crystals. In Integrated Photonics Research, Vol. 4, 178–180. OSA Technical Digest Series, Optical Society of America, Washington, DC, 1998.

    Google Scholar 

  • Krauss, T.F., B. Vogele, C.R. Stanley and R.M. De La Rue. Waveguide microcavity based photonic microstructures. IEEE Photonics Tech. Lett. 9(2) 176–178, 1997.

    Google Scholar 

  • Kunz, K.S. and R.J. Luebbers. The Finite Difference Time Domain Method for Electromagnetics CRC Press, Boca Raton, Florida, 1993.

    Google Scholar 

  • Liang, T. and R.W. Ziolkowski. Design and characterization of a grating assisted coupler enhanced by a PBG structure for effective WDM demultiplexing. Opt. Lett. 22(13) 1033–1035, 1997a.

    Google Scholar 

  • Liang, T. and R.W. Ziolkowski. Mode conversion of ultrafast pulses by grating structures in layered dielectric waveguides. J. Lightwave Tech. 15(10) 1966–dy1973, 1997b.

    Google Scholar 

  • Liang, T. and R.W. Ziolkowski. Dispersion effects on grating assisted couplers under ultrafast pulse excitations. Microwave and Opt. Tech. Lett. 17(1) 17–23, 1998a.

    Google Scholar 

  • Liang, T. and R.W. Ziolkowski. Ultrafast pulsed mode effects on the performance of grating assisted couplers of finite extent. Opt. Lett. 23(6) 469–471, 1998b.

    Google Scholar 

  • Liang, T. and R.W. Ziolkowski. Grating assisted waveguide-to-waveguide couplers. IEEE Photonics Tech. Lett. 10(5) 693–695, 1998c.

    Google Scholar 

  • Maloney, J.G., M.P. Kesler, B.L. Shirley and G.S. Smith. A simple description for waveguiding in photonic bandgap materials. Microwave and Opt. Tech. Lett. 14(5) 261–266, 1997.

    Google Scholar 

  • Maystre, D. Electromagnetic study of photonic band gaps. Pure Appl. Opt. 3(6) 975–993, 1994.

    Google Scholar 

  • Mekis, A., J.C. Chen, I. Kurland, S. Fan, P.R. Villeneuve and J.D. Joannopoulos. High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77(18) 3787–3790, 1996.

    Google Scholar 

  • Mekis, A., S. Fan and J.D. Joannopoulos. Bound states in photonic crystal waveguides and waveguide bends. Phys. Rev. B 58(8) 4809–4817, 1998.

    Google Scholar 

  • Painter, O., R. Lee, A. Yariv and A. Scherer. Photonic bandgap membrane microresonator. In Integrated Photonics Research, Vol. 4, 221–223. OSA Technical Digest Series, Optical Society of America, Washington, DC, 1998.

    Google Scholar 

  • Reineix, A. and B. Jecko. A new photonic band gap equivalent model using finite difference time domain method. Annales des Telecommunications 51(11–12), 656–662, 1996.

    Google Scholar 

  • Shanhui Fan, P.R. Villeneuve and J.D. Joannopoulos. Channel drop falters in photonic crystals. Optics Express 3(1) 1998.

  • Shawn-Yu Lin, E. Chow, V. Hietala, P.R. Villeneuve and J.D. Joannopoulos. Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal. Science 282(5387) 274–276, 1998.

    Google Scholar 

  • Taflove, A. Computational Electrodynamics, Artech House, Norwood, MA, 1995.

    Google Scholar 

  • Taflove, A. Advances in Computational Electrodynamics, Artech House, Norwood, MA, 1998.

    Google Scholar 

  • Thevenot, M., A. Reineix and B. Jecko. A new FDTD surface impedance formalism to study PBG structures. Microwave and Opt. Tech. Lett. 18(3) 203–206, 1998.

    Google Scholar 

  • Villeneuve, P.R., S. Fan and J.D. Joannopoulos. Microcavities in photonic crystals: mode symmetry, tunability, and coupling effciency. Phys. Rev. B 54(11) 7837–7842, 1996.

    Google Scholar 

  • Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58(20) 2059–2062, 1987.

    Google Scholar 

  • Ziolkowski, R.W. and J.B. Judkins. NL-FDTD Modeling of Linear and Nonlinear Corrugated Wave-guides. J. Opt. Soc. Am. B 11(9) 1565–1575, 1994.

    Google Scholar 

  • Ziolkowski, R.W., J.M. Arnold and D.M. Gogny. Ultrafast pulse interactions with two-level atoms. Phys. Rev. A 52(4) 3082–3094, 1995.

    Google Scholar 

  • Ziolkowski, R.W. and S.J. Franson. Finite-difference time-domain (FDTD) modeling of photonic band gap structures constructed from electric and magnetic materials. 1996 OSA Annual Meeting, Rochester, NY, October 1996.

  • Ziolkowski, R.W. Realization of an all-optical triode and diode with a two-level atom loaded diffraction grating. Appl. Opt. 36(33) 8547–8556, 1997.

    Google Scholar 

  • Ziolkowski, R.W. and S. J. Franson. Finite-difference time-domain (FDTD) modeling of photonic band gap waveguide structures. 1997 OSA Annual Meeting, Long Beach, CA, October 1997.

  • Ziolkowski, R.W. FDTD modeling of photonic nanometer-sized power splitters and switches. In Integrated Photonics Research Vol. 4, 175–177. OSA Technical Digest Series, Optical Society of America, Washington, DC, 1998.

    Google Scholar 

  • Ziolkowski, R.W. Finite photonic band gap material based waveguides, power splitters and switches. IEEE Antennas and Propagation Society 1998 International Symposium and USNC/URSI National Radio Science Meeting, Atlanta GA, June 1998a.

  • Ziolkowski, R.W. and M. Tanaka. Finite-difference time-domain modeling of dispersive material photonic band-gap structures. J. Opt. Soc. Am. A 16(4) 930–940, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziolkowski, R.W., Tanaka, M. FDTD analysis of PBG waveguides, power splitters and switches. Optical and Quantum Electronics 31, 843–855 (1999). https://doi.org/10.1023/A:1006964830895

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006964830895

Navigation