Skip to main content
Log in

An improved design of an integrated optical isolator based on non-reciprocalMach–Zehnder interferometry

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Non-reciprocal rib waveguide structures can be used to realize integrated optical isolators. In this paper, we propose a concrete design for a Mach–Zehnder interferometer type isolator for TM modes. Just one of the arms, which are of equal length, is a non-reciprocal magneto-optic waveguide. The rest of the interferometer is reciprocal. Required fabrication tolerances are estimated, and the entire isolator is simulated by applying a finite difference beam propagation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Wolfe, J. Dillon Jr, R. A. Lieberman and V. J. Fratello, Appl. Phys. Lett. 57 (1990) 960.

    Google Scholar 

  2. K. Ando, T. Okoshi and N. Koshizuka, Appl. Phys. Lett. 53 (1988) 4.

    Google Scholar 

  3. T. Mizumoto, Y. Kawaoka and Y. Naito, Trans. IECE Jpn. E 69 (1986) 968.

    Google Scholar 

  4. H. Hemme, H. DÖtsch and P. Hertel, Appl. Opt. 29 (1990) 2741.

    Google Scholar 

  5. S. Yamamoto, Y. Okamura and T. Makimoto, IEEE J. Quantum Electron. QE-12 (1976) 764.

    Google Scholar 

  6. T. Shintaku, Appl. Phys. Lett. 66 (1995) 2789.

    Google Scholar 

  7. F. Auracher and H. Witte, Opt. Commun. 13 (1975) 435.

    Google Scholar 

  8. Y. Okamura, T. Negami and S. Yamamoto, Appl. Opt. 23 (1984) 1886.

    Google Scholar 

  9. S. Yamamoto and T. Makimoto, J. Appl. Opt. 45 (1974) 882.

    Google Scholar 

  10. A. Erdmann, M. Shamonin, P. Hertel and H. DÖtsch, Opt. Commun. 102 (1993) 25.

    Google Scholar 

  11. M. Koshiba and X. Zhuang, J. Lightwave Technol. 11 (1993) 1453.

    Google Scholar 

  12. N. Mabaya, P. Lagasse and P. Vandenbulcke, IEEE Trans. Microwave Theory Tech. MTT-29 (1981) 600.

    Google Scholar 

  13. M. Shamonin and P. Hertel, Appl. Opt. 33 (1994) 6415.

    Google Scholar 

  14. M. Shamonin and P. Hertel, Opt. Eng. 34 (1995) 849.

    Google Scholar 

  15. M. Wallenhorst, M. NiemÖller, H. DÖtsch, P. Hertel, R. Gerhardt and B. Gather, J. Appl. Phys. 77 (1995) 2902.

    Google Scholar 

  16. T. Mizumoto, S. Mashimo, T. Ida and Y. Naito, IEEE Trans. Magn. 29 (1993) 3417.

    Google Scholar 

  17. P. LÖbl, M. Huppertz and D. Mergel, Thin Solid Films 251 (1994) 72.

    Google Scholar 

  18. J. P. Bennett, E. Pelletier, G. Albrand, J. P. Borgogno, B. Lazarides, C. K. Carniglia, R. A. Schmell, T. H. Allen, T. Tuttle-Hart, K. H. Guenther and A. Saxer, Appl.Opt. 28 (1989) 3303.

    Google Scholar 

  19. M. J. Ahmed and L. Young Appl. Opt. 22 (1983) 4082.

    Google Scholar 

  20. R. Wolfe, R. A. Lieberman, V. J. Fratello, R. E. Scotti and N. Kopylov, Appl. Phys. Lett. 56 (1989) 426.

    Google Scholar 

  21. W. Karthe and R. MÜller, Integrierte Optik (Akademische Verlags-gescellschaft Geest & Portig, Leipzig, 1991).

    Google Scholar 

  22. K. Tsutsumi, Y. Imada, H. Hirai and Y. Yuba, J. Lightwave Technol. 6 (1988) 590.

    Google Scholar 

  23. M. D. Feit and J. A. Fleck Jr, Appl. Opt. 17 (1978) 3990.

    Google Scholar 

  24. Y. Chung and N. Dagli, IEEE J. Quantum Electron. 26 (1990) 1335.

    Google Scholar 

  25. H. J. W. M. Hoekstra, Opt. Quantum Electron. 29 (1997) 157.

    Google Scholar 

  26. A. Erdmann and P. Hertel, IEEE J. Quantum Electron. 31 (1995) 1510.

    Google Scholar 

  27. G. B. Hocker and W. K. Burns, Appl. Opt. 16 (1977) 113.

    Google Scholar 

  28. G. R. Hadley, Opt. Lett. 16 (1991) 624.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahlmann, N., Lohmeyer, M., Wallenhorst, M. et al. An improved design of an integrated optical isolator based on non-reciprocalMach–Zehnder interferometry. Optical and Quantum Electronics 30, 323–334 (1998). https://doi.org/10.1023/A:1006958820957

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006958820957

Keywords

Navigation