Skip to main content
Log in

Tetranuclear copper complexes with new β-diketone and β-iminoketone-containing ligands

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Novel tetranuclear copper complexes, Cu4(OH)2(ClO4)3 (HA)·H2O (1) and Cu4(ClO4)5(H3B)·3H2O (2), were synthesized by reacting 1,5-bis(1′-phenyl-3′-methyl-5′-pyrazolone-4′)-1 ,5-pentanedione with 1,3-propanediamine and 2-hydroxyl-1,3-propanediamine in the presence of a template reagent copper ion. New [2+2] type open cyclic multidentate ligands are also obtained from the reaction (H4A and H6B stand for new compounds from 1,3-propanediamine and 2-hydroxyl-1,3-propanediamine, respectively). They each contain five C = O, three C = N and one NH2 groups. The complexes were characterized by elemental analyses, conductivity, FT-i.r. (micro-i.r., deconvolution technique), FAB-MS, e.s.r., electronic spectra and extended X-ray absorption fine structure (EXAFS). Copper ions in (1) are basically four coordinate with tetragonal geometry. The average coordination bond distances of Cu–N and Cu–O are 1.91 Å and 2.05 Å. In (2), copper ions are primarily five coordinate with square-based pyramidal geometry. The average coordination bond distances of Cu–N and Cu–O are 1.93Å and 2.08Å. Four copper atoms in molecules may be arranged tetragonally. Both the ligand field and the coordination bonds in complex (1) are stronger than those in (2). Investigations on variable temperature susceptibilities show that some antiferromagnetic exchange interaction exist in the complexes. The plots of χ−1 versus T obey the Curie-Weiss law only at low temperature. Preliminary results of a bioassay indicate that the two complexes have some antitumour activity in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Harriman and R. Ziessel, Chem. Commun., 1707 (1996).

  2. D. W. Bruce and D. O'Hare, Inorganic Materials, 2 Ed., Wiley, 1996.

  3. L. Fabrrizzi and A. Poggi (Eds), Transition Metals in Supramole-cular Chemistry, Kulwer Academic Publishers, The Netherlands, 1994.

    Google Scholar 

  4. R. V. Slone and J. T. Hupp, Inorg. Chem., 36, 5422 (1997).

    Google Scholar 

  5. Y. Aratake, H. Okawa, E. Asato, H. Sakiyama, M. Kooleva, S. Kida and M. Sakamoto, J. Chem. Soc., Dalton Trans., 2941 (1990).

  6. D. J. Cardenas, P. Gavina and J.-P. Sauvage, J. Am. Chem. Soc., 119, 2656 (1997).

    Google Scholar 

  7. X. Dong, F. Liu and Y. Zhao, Acta Chim. Sinica, 41, 848 (1983).

    Google Scholar 

  8. L. Yang and R. Yang, J. Lanzhou University (Nat. Sci.), 3, 134 (1988).

    Google Scholar 

  9. L. Yang and R. Yang, Polyhedron, 14, 507 (1995); X. Li, R. Yang, ibid, 11, 1545 (1992).

    Google Scholar 

  10. L. Yang and R. Yang, Acta Chim. Sinica, 47, 911(1989); Chem. J. Chin. Univ., 10, 225 (1989); J. Coord. Chem., 33, 301 (1994).

    Google Scholar 

  11. L. Yang, R. Yang, W. Dong and J. Liu, Acta Chim. Sinica, 47, 633 (1989).

    Google Scholar 

  12. L. Yang, J. Wu, Z. Xu, Y. Dong and X. Ju, Optronics Lasers, 6, 539 (1995).

    Google Scholar 

  13. L. Yang and R. Yang, J. Mol. Struc., 380, 75 (1996); L. Yang, J. Lin and J. Wu, J. Functional Materials, 29, 1182 (1998).

    Google Scholar 

  14. R. L. Lintvedt, M. D. Glick, B. K. Tomlonovic and D. P. Gavel, Inorg. Chem., 15, 1646 (1976); U. Casellato, D. Fregona, S. Sitran, S. Tamburini, P. A. Vigato and P. Zanello, Inorg. Chim. Acta, 95, 279 (1984).

    Google Scholar 

  15. L. Yang, J. Wu and X. Ju, Acta Chim. Sinica, 54, 374 (1996); L. Yang, G. Yao and J. Wu, Chinese J. Luminescence, 19, in press, (1998).

    Google Scholar 

  16. L. Yang, X. Ju and J. Wu Chinese Science Bulletin, 41, 1000 (1996).

    Google Scholar 

  17. L. Yang, S. Yan, G. Wang, H. Wang, R. Wang and X. Yao, Chinese J. Struc. Chem., 14, 117 (1995).

    Google Scholar 

  18. W. J. Geary, Coord. Chem. Rev., 7, 81 (1971).

    Article  Google Scholar 

  19. K. Nakamoto, Infrared and Raman Spectroscopy of Inorganic and Coordination Compounds, 4th Ed., New York, Wiley, 1986.

    Google Scholar 

  20. J. Wu (Ed), Morden Fourier Transform Infrared Spectroscopy Technology and Applications, Beijing, Science and Technology Document Publishing House, 1994.

    Google Scholar 

  21. C. D. Olsen, G. Basu and R. L. Belford, J. Coord. Chem., 1, 17 (1971); G. R. Hedwig, J. L. Love and H. J. K. Powell, Aus. J. Chem., 23, 981 (1970).

    Google Scholar 

  22. S. Tyagi and B. J. Hathaway, J. Chem. Soc., Dalton Trans., 199, (1983).

  23. A. A. G. Tomlison and B. J. Hathaway, J. Chem. Soc. (A), 1905 (1968); M. Duggan, N. Ray and B. J. Hathaway, J. Chem. Soc., Dalton Trans., 1342 (1980).

  24. S. S. Eaton, K. M. More, B. M. Sawant and G. R. Eaton, J. Am. chem. Soc., 105, 6560 (1983).

    Google Scholar 

  25. R. C. Slade, A. A. G. Tomlinson, B. J. Hathaway and D. E. Billing, J. Chem. Soc. (A), 61 (1968); Hathaway and D. E. Billing, Coord. Chem. Rev., 5, 143 (1970).

  26. W. Fujita, K. Awaga and T. Yokoyama, Inorg. Chem., 136, 196 (1997).

    Google Scholar 

  27. F. Denizot and R. Long, J. Immun. Methods, 89, 271 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Wu, J. & Ju, X. Tetranuclear copper complexes with new β-diketone and β-iminoketone-containing ligands. Transition Metal Chemistry 24, 340–345 (1999). https://doi.org/10.1023/A:1006952117118

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006952117118

Keywords

Navigation