Skip to main content
Log in

Optical dielectric waveguide analysis, based on the modified finite element and integral equation methods

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Efficient versions of the finite element and integral equation methods have been developed to analyse the guided (surface) modes of an arbitrary shaped optical fibre. The first approach is based on the replacement of the open waveguide by the screen guide structure with an artificial impedance wall. The integral equation is solved by the adaptive collocation technique. The methods are used to calculate the dispersion characteristics of the elliptical fibre modes and their cut-off frequencies. The results obtained are compared with those calculated by other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Chiang, Opt. Quantum Electron. 26 (1994) S113.

    Google Scholar 

  2. A. I. Kleev. A. B. Manenkov and A. G. Rozhnev, J. Commun. Technol. Electron. 39 (1994) 90.

    Google Scholar 

  3. O. Leminger and R. Zengerle, Opt. Quantum Electron. 27 (1995) 1009.

    Google Scholar 

  4. C. Yeh, K. Ha and W. P. Brown, Appl. Opt. 18 (1979) 1490.

    Google Scholar 

  5. K. Hayata, M. Eguchi and M. Koshiba, IEEE Trans. MTT-36 (1988) 614.

    Google Scholar 

  6. M. J. McDougall and J. P. Webb, IEEE Trans. MTT-37 (1989) 1724.

    Google Scholar 

  7. J. A. M. Svedin, IEEE Trans. MTT-39 (1991) 258.

    Google Scholar 

  8. A. I. Zhbanov, A. B. Manenkov and A. G. Rozhnev, Sov. J. Commun. Technol. Electron. 35 (1990) 81.

    Google Scholar 

  9. K. Oyamada and T. Okoshi, Radio Sci. 17 (1982) 109.

    Google Scholar 

  10. L. Eyges, P. Gianino and P. Wintersteiner, J. Opt. Soc. Am. 69 (1979) 1226.

    Google Scholar 

  11. E. A. J. Marcatili, Bell System Tech. J. 48 (1969) 2071.

    Google Scholar 

  12. A. I. Kleev and A. B. Manenkov, Radiophys. Quantum Electron. 31 (1988) 75.

    Google Scholar 

  13. A. B. Manenkov, Izv. VUZ'ov - Radiofizika 40 (1997) 1004 (in Russian).

    Google Scholar 

  14. J. D. Jackson, Classical Electrodynamics (J. Wiley, New York, 1962).

    Google Scholar 

  15. J. H. Wilkinson and C. Reinsch, Linear Algebra (Handbook for Automatic Computation), Vol. 2 (Springer-Verlag, Berlin, 1971).

    Google Scholar 

  16. G. Strang and G. J. Fix, An Analysis of the Finite Element Method (Prentice-Hall, Englewood Cliffs, 1973).

    Google Scholar 

  17. K. S. Chiang, J. Lightwave Technol. 4 (1986) 980.

    Google Scholar 

  18. K. S. Chiang, Opt. Quantum Electon. 16 (1984) 487.

    Google Scholar 

  19. C.-C. Su, IEEE Trans. MTT-33 (1985) 1101.

    Google Scholar 

  20. S. Jiang and B. Liu, Opt. Quantum. Electron. 20 (1988) 23.

    Google Scholar 

  21. T. M. Benson, P. C. Kendall, M. Stern and D. A. Quinney, IEE Proc., pt. J 136 (1989) 97.

    Google Scholar 

  22. A. B. Manenkov, Izv. VUZ'ov - Radiofizika 33 (1990) 93 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MANENKOV, A.B., ROZHNEV, A.G. Optical dielectric waveguide analysis, based on the modified finite element and integral equation methods. Optical and Quantum Electronics 30, 61–70 (1998). https://doi.org/10.1023/A:1006918809370

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006918809370

Keywords

Navigation