Skip to main content
Log in

Activities of glycolipid glycosyltransferases and sialidases during the early development of Xenopus laevis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The activities of glycosyltransferases and sialidases, together with the ganglioside content and distribution, have been extensively studied in mammals, while the informations on tissues of other animals, including amphibian, are scarce. In this paper we present data on the activities of SAT-1, SAT-2, SAT-4, SAT-5, GlcNAcT-1, GalNAcT-1, GalT-6, and sialidases studied in Xenopus laevis embryos at different stages of development. The highest activity was found at days 4 and 5 of embryogenesis for glycosyltransferases and sialidases respectively; a tentative correlation between the in vitro activity of these enzymes and the content of neutral and acidic glycolipids is discussed. (Mol Cell Biochem 166: 117-124, 1997)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hakomori S: Bifunctional role of glycosphingolipids: modulators for transmembrane signalling and mediators for cellular interactions. J Biol Chem 265: 18713–18716, 1990

    Google Scholar 

  2. Turner AP, Brown D, Heasman J, Cook GMV, Evans J, Vickers L, Wylie CC: Involvement of a neutral glycolipid in differential cell adhesion in the Xenopus blastula. EMBO J 11: 3845–3855, 1992

    Google Scholar 

  3. Zeller CB, Marchese RB: Gangliosides as modulators of cell functions. Am J Physiol 262: C1341-C1355, 1992

    Google Scholar 

  4. Nagai Y: Functional roles of gangliosides in bio-signaling. Behav Brain Res 66: 99–104, 1994

    Google Scholar 

  5. Nagai Y, Iwamori M: Cellular biology of gangliosides. In: A Rosemberg (ed.). Biology of the Sialic Acid. Plenum Press, New York, 1995, pp 197–241

    Google Scholar 

  6. Paulson J C, Colley KJ: Glycosyltransferases. J Biol Chem 264: 17615–17618, 1989

    Google Scholar 

  7. Berra B, Gorini SM, Riboni L: Correlation between ganglioside distribution and histological grading of human astrocytumas. Int J Cancer 36: 363–366, 1985

    Google Scholar 

  8. Berra B, Papi L, Bigozzi U, Serino D, Morichi R, Menonna P, Rapelli S, Cogliati T, Montali E: Correlation between cytogenetic data and ganglioside pattern in human meningiomas. Int J Cancer 47: 329–333, 1991

    Google Scholar 

  9. Ohashi M: A new type of ganglioside. The structures of three novel gangliosides from the fat body of the frog. J Biochem 88: 583–589, 1980

    Google Scholar 

  10. Hidari K, Itonori S, Sanai Y, Ohashi M, Kasama T, Nagai Y: Isolation and characterization of a monosialosylgangliopentaosyl ceramide from Xenopus laevis oocyte. J Biochem 110: 412–416, 1991

    Google Scholar 

  11. Nohara K, Suzuki M, Inagaki F, Sano T, Kaya KA: Novel disialoganglioside in rat spleen Iymphocytes. J Biol Chem 267: 14982–14986, 1992

    Google Scholar 

  12. Gornati R, Basu S, Montorfano G, Berra B: Glycosyltransferase activities in human meningiomas. Preliminary results. Cancer Biochem Biophys 15: 1–10, 1995

    Google Scholar 

  13. van Echten G, Sandoff K: Ganglioside Metabolism. J Biol Chem 268: 5341–5344, 1993

    Google Scholar 

  14. Ruan A, Lloyd KO: Glycosilation pathways in the biosynthesis of gangliosides in melanoma and neuroblastoma cells: relative glycosyltransferase levels determine ganglioside pattern. Cancer Res. 52: 5725–5731, 1992

    Google Scholar 

  15. Basu S, Basu M: Expression of glycosphigolipid glycosyltransferases in development and transformation. In: MI Horowits (ed.) The glycoconjugates vol. III. Academic Press Inc., New York, 1982, pp 265–284

    Google Scholar 

  16. Coleman PL, Fishman PH, Brady RO, Todaro GJ: Altered ganglioside biosynthesis in mouse cell cultured following transformation with chemical carcinogens and X irradiation. J Biol Chem 250: 55–60, 1975

    Google Scholar 

  17. Gornati R, Rizzo AM, Tong XW, Berra B, Bernardini G: Glycolipid pattern during Xenopus embryo development. Cell Biol Int 19: 183–189, 1995

    Google Scholar 

  18. Basu M, Basu S, Stoffyn A, Stoffyn P: Biosynthesis in vitro of sialyl(a2–3))neolactosylceramide by a sialyltransferase from embryonic chicken brain. J Biol Chem 257: 12765–12769, 1982

    Google Scholar 

  19. Bernardini G, Vismara C, Boracchi P, Camatini M: Lethality, teratogenicity and growth inhibition of heptanol in Xenopus assayed by a modified frog embryo teratogenesis assay-Xenopus (FETAX) procedure. Sci Total Environ 151: 1–8, 1994

    Google Scholar 

  20. Basu M, Das KK, Kyle JW, Chon HC, Schaeper R, Basu S: Complex Carbohydrates. In: V Ginsburg (ed.) Methods in Enzymology, vol 38. Academic Press, Inc., New York, 1987, pp 575–607

    Google Scholar 

  21. Peterson GM: A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83: 346–356, 1977

    Google Scholar 

  22. Marchesini B, Venerando A, Fiorilli A, Preti A: Use of 2'-(4-methylumbelliferil)-α-D-N-Acetylneuraminic acid for the determination of sialidase activity in different tissues. Perspectives in inherited metabolic diseases 4: 191–203, 1981

    Google Scholar 

  23. Bellman Yip G, Dain JA: The enzymic synthesis of ganglioside. II. UDP-Galactose: N-Acetylgalactosaminil-(N-Acetyl-neuraminyl) galactosyl-glucosyl-ceramide galactosyltranferase in rat brain. Biochem Biophys Acta 206: 252–260, 1970

    Google Scholar 

  24. Stoffyn A, Stoffyn P, Faroo M, Synder DS, Norton WT: Sialosyltransferase activity and specificity in the biosynthesis in vitro of sialosylgalactosylceramide (GM4) and sialosyllactosylceramide (GM3) by rat astrocyles, neuronal perikarya, and oligodendroglia. Neurochem Res 6: 1149–1157, 1981

    Google Scholar 

  25. Percy AK, Gottfries J, Vilbergsson G, Mansson JE, Sandhoff K: Glycosphingolipid glycosyltransferases in human fetal brain. J Neurochem 56: 1461–1465, 1991

    Google Scholar 

  26. Basu S, Basu M, Basu SS: Biological specificity of sialyltransferases. In: A Rosemberg (ed.) Biology of Sialic Acid. Plenum Press, New York, 1995, pp 69–94

    Google Scholar 

  27. Yip MCM, Dain JA: Frog brain uridine diphosphate galactose-N Acetylgalactosaminyl-N-acetylneuraminylgalactosyl glucosyl ceramide galactosyltransferase. Biochem J 118: 247–252, 1970

    Google Scholar 

  28. Hidari KIP, Nagai Y, Sanai YA: Unique biosynthetic pathway for gangliosides exists in Xenopus laevis oocytes. FEBS Lett 353: 25–28, 1994

    Google Scholar 

  29. Seyfried TN, Novikov AM, Irvine RA, Brigande JV: Ganglioside biosynthesis in mouse embryos: sialyltransferase IV and the asialo pathway. J Lip Res 35: 993–1001, 1994

    Google Scholar 

  30. Svennerholm L, Bostrom K, Fredman P, Mansson J-E, Rosengren B, Rynmark BM: Human brain gangliosides: developmental changes from early fetal stage to advanced age. Biochem Biophys Acta 1005: 109–117, 1989

    Google Scholar 

  31. Venerando B, Fiorilli A, Ditrancesco L, Chiarini A, Monti E, Zizzioli D, Tettamanti G: Cytosolic sialidase from pig brain: a protein complex containing catalytic and protective units. Biochim Biophys Acta 128: 229–237, 1994

    Google Scholar 

  32. Rizzo AM, Gornati R, Rossi F, Bernardini G, Berra B: Retinoic acid induces changes in Xenopus embryo glycolipid pattern. Cell Biology International 19: 895–891, 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gornati, R., Basu, S., Bernardini, G. et al. Activities of glycolipid glycosyltransferases and sialidases during the early development of Xenopus laevis . Mol Cell Biochem 166, 117–124 (1997). https://doi.org/10.1023/A:1006891414663

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006891414663

Navigation