Skip to main content

Protocols for Glycosyltransferase Assays: Ganglioside Globoside and Lewis-X Intermediate-Lactosylceramide Biosyntheses in Eukaryotic Systems

  • Protocol
  • First Online:
Gangliosides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1804))

  • 1351 Accesses

Abstract

Protocols for assay of 24 different Glycolipid-Glycosyltransferases (GSL-GLTs) of the eukaryotic systems are described. Problems of quantitating the activities in crude membranes are also described. Different separation methods (for separation of substrate, donors, and the product of the reaction) have been described based on the paper chromatography or high voltage paper electrophoresis in 1.0% Na2B4O7. Liquid Scintillation counting system was used for quantitation of the enzymatic product. In the assay of each GSL-GLT it is recommended to compare the selected method to be used with the exact conditions used by the authors published previously. As a test case for these assays the following kinetic parameters for Lactosylceramide Synthase, GalT-2 (UDP-Gal: Glc-Cer β1-4-galactosyltransferase), (Km of glucosylceramide = 1.65 × 10−4 M; Km for UDP-Gal = 0.5 × 10−4 M; V max is determined in the presence of optimum detergent concentrations (2–15 mg/ml of Cutscum–Triton X-100, 2:1); Mn++ and Mg++, 10–20 mM) has been reported. The importance of use of GalT-2 assay method (as a model system) in the purified Golgi-rich membranes from 13-day-old embryonic chicken brains (13-ECB) is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basu S, Basu M (1982) Expression of glycosphingolipid glycosyltransferases in development and transformation. In: Horowitz M (ed) The glycoconjugates V3: glycoproteins, glycolipids and proteoglycans, vol 3. Academic Press, New York, pp 265–285

    Chapter  Google Scholar 

  2. Basu S, Basu M, Dastgheib S, Hawes JW (1999) Biosynthesis and regulation of glycosphingolipids. In: Barton KN D, Meth-Cohen O (eds) Comprehensive natural products chemistry, vol 3. Pergamon Press, New York, pp 107–128

    Chapter  Google Scholar 

  3. Basu S, Das K, Basu M (2000) Glycosyltransferase in glycosphingolipid biosynthesis. In: Ernst B, Sinay P, Hart G (eds) Oligosaccharides in chemistry and biology – a comprehensive handbook. Wiley-VCH Verlag GmbH, Weinheim, pp 329–347

    Google Scholar 

  4. Basu S, Ma R, Moskal JR, Basu M (2012) Ganglioside biosynthesis in developing brains and apoptotic cancer cells: X. regulation of glyco-genes involved in GD3 and Sialyl-Lex/a syntheses. Neurochem Res 37(6):1245–1255. https://doi.org/10.1007/s11064-012-0762-9

    Article  PubMed  CAS  Google Scholar 

  5. Basu S, Basu M, Kyle JW, Chon HC (1984) Biosynthesis in vitro of gangliosides containing Gg- and Lc-cores. Adv Exp Med Biol 174:249–261

    Article  CAS  PubMed  Google Scholar 

  6. Higashi H, Basu M, Basu S (1985) Biosynthesis in vitro of disialosylneolactotetraosylceramide by a solubilized sialyltransferase from embryonic chicken brain. J Biol Chem 260(2):824–828

    PubMed  CAS  Google Scholar 

  7. Ma R, Matthew Decker N, Anilus V, Moskal JR, Burgdorf J, Johnson JR, Basu M, Banerjee S, Basu S (2009) Post-translational and transcriptional regulation of glycolipid glycosyltransferase genes in apoptotic breast carcinoma cells: VII. Studied by DNA-microarray after treatment with L-PPMP. Glycoconj J 26(6):647–661. https://doi.org/10.1007/s10719-008-9219-4

    Article  PubMed  CAS  Google Scholar 

  8. Basu S, Ma R, Boyle PJ, Mikulla B, Bradley M, Smith B, Basu M, Banerjee S (2004) Apoptosis of human carcinoma cells in the presence of potential anti-cancer drugs: III. Treatment of Colo-205 and SKBR3 cells with: cis -platin, tamoxifen, melphalan, betulinic acid, L-PDMP, L-PPMP, and GD3 ganglioside. Glycoconj J 20(9):563–577. https://doi.org/10.1023/B:GLYC.0000043293.46845.07

    Article  PubMed  CAS  Google Scholar 

  9. Fukushi Y, Hakomori S, Shepard T (1984) Localization and alteration of mono-, di-, and trifucosyl alpha 1–3 type 2 chain structures during human embryogenesis and in human cancer. J Exp Med 160(2):506–520

    Article  CAS  PubMed  Google Scholar 

  10. Mao S, Gao C, Lo CH, Wirsching P, Wong CH, Janda KD (1999) Phage-display library selection of high-affinity human single-chain antibodies to tumor-associated carbohydrate antigens sialyl Lewisx and Lewisx. Proc Natl Acad Sci U S A 96(12):6953–6958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ashizawa T, Aoki T, Yamazaki T, Katayanagi S, Shimizu H, Koyanagi Y (2003) The clinical significance of sialyl Lewis antigen expression in the spread of gastric cancer. Flow cytometric DNA analysis. J Exp Clin Cancer Res 22(1):91–98

    PubMed  CAS  Google Scholar 

  12. Silva Z, Tong Z, Cabral MG, Martins C, Castro R, Reis C, Trindade H, Konstantopoulos K, Videira PA (2011) Sialyl Lewisx-dependent binding of human monocyte-derived dendritic cells to selectins. Biochem Biophys Res Commun 409(3):459–464. https://doi.org/10.1016/j.bbrc.2011.05.026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Matsumoto S, Imaeda Y, Umemoto S, Kobayashi K, Suzuki H, Okamoto T (2002) Cimetidine increases survival of colorectal cancer patients with high levels of sialyl Lewis-X and sialyl Lewis-A epitope expression on tumour cells. Br J Cancer 86(2):161–167. https://doi.org/10.1038/sj.bjc.6600048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kannagi R (2004) Molecular mechanism for cancer-associated induction of sialyl Lewis X and sialyl Lewis A expression—the Warburg effect revisited. Glycoconj J 20(5):353–364. https://doi.org/10.1023/B:GLYC.0000033631.35357.41

    Article  Google Scholar 

  15. Basu S, Kaufman B, Roseman S (1965) Conversion of Tay-Sachs ganglioside to monosialoganglioside by brain uridine diphosphate D-galactose: glycolipid galactosyltransferase. J Biol Chem 240(10):4115–4117

    PubMed  CAS  Google Scholar 

  16. Basu S, Kaufman B, Roseman S (1968) Enzymatic synthesis of ceramide-glucose and ceramide-lactose by glycosyltransferases from embryonic chicken brain. J Biol Chem 243(21):5802–5804

    PubMed  CAS  Google Scholar 

  17. Basu S, Kaufman B, Roseman S (1973) Enzymatic synthesis of glucocerebroside by a glucosyltransferase from embryonic chicken brain. J Biol Chem 248(4):1388–1394

    PubMed  CAS  Google Scholar 

  18. Steigerwald JC, Basu S, Kaufman B, Roseman S (1975) Sialic acids. Enzymatic synthesis of Tay-Sachs ganglioside. J Biol Chem 250(17):6727–6734

    PubMed  CAS  Google Scholar 

  19. Keenan TW, Morre DJ, Basu S (1974) Ganglioside biosynthesis. Concentration of glycosphingolipid glycosyltransferases in Golgi apparatus from rat liver. J Biol Chem 249(1):310–315

    CAS  PubMed  Google Scholar 

  20. Basu S, Basu M, Kyle JW, De T, Das K, Schaeper RJ (1986) Biosynthesis of gangliosides and blood group glycolipids using solubilized glycosyltransferases. In: Freysz SG (ed) Enzymes of lipid metabolism. Plenum, New York, pp 233–245

    Chapter  Google Scholar 

  21. Basu M, Basu S (1972) Enzymatic synthesis of a tetraglycosylceramide by a galactosyltransferase from rabbit bone marrow. J Biol Chem 247(5):1489–1495

    PubMed  CAS  Google Scholar 

  22. Basu M, Basu S (1973) Enzymatic synthesis of a blood group B-related pentaglycosylceramide by an alpha-galactosyltransferase from rabbit bone marrow. J Biol Chem 248(5):1700–1706

    PubMed  CAS  Google Scholar 

  23. Basu M, Chien JL, Basu S (1974) Biosynthesis of guinea pig erythrocyte triglycosylceramide by bone marrow beta-N-acetylgalactosaminyltransferase. Biochem Biophys Res Commun 60(3):1097–1104

    Article  CAS  PubMed  Google Scholar 

  24. Basu M, Basu S, Potter M (1980) Biosynthesis of blood group related glycosphingolipids in T- and B-lymphomas and neuroblastoma cells. In: Sweeley CC (ed) Cell surface glycolipids, vol 128, pp 187–212

    Chapter  Google Scholar 

  25. Presper KA, Basu M, Basu S (1982) Biosynthesis in vitro of a blood group B-active fucose-containing hexaglycosylceramide from neolactopentaosylceramide in bovine spleen. J Biol Chem 257(1):169–173

    PubMed  CAS  Google Scholar 

  26. Presper KA, Basu M, Basu S (1978) Biosynthesis in vitro of fucose-containing glycosphingolipids in human neuroblastoma IMR-32 cells. Proc Natl Acad Sci U S A 75(1):289–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Basu M, Basu S, Stoffyn A, Stoffyn P (1982) Biosynthesis in vitro of sialyl(alpha 2-3)neolactotetraosylceramide by a sialyltransferase from embryonic chicken brain. J Biol Chem 257(21):12765–12769

    PubMed  CAS  Google Scholar 

  28. Basu M, De T, Das KK, Kyle JW, Chon HC, Schaeper RJ, Basu S (1987) Glycosyltransferases involved in glycolipid biosynthesis. In: Ginsburg V (ed) Methods in enzymology, vol 138. Academic, New York, pp 575–607

    Google Scholar 

  29. Basu M, Hawes JW, Li Z, Ghosh S, Khan FA, Zhang BJ, Basu S (1991) Biosynthesis in vitro of SA-Lex and SA-diLex by alpha 1-3 fucosyltransferases from colon carcinoma cells and embryonic brain tissues. Glycobiology 1(5):527–535

    Article  CAS  PubMed  Google Scholar 

  30. Holmes EH, Ostrander GK, Hakomori S (1985) Enzymatic basis for the accumulation of glycolipids with X and dimeric X determinants in human lung cancer cells (NCI-H69). J Biol Chem 260(12):7619–7627

    PubMed  CAS  Google Scholar 

  31. Radhakrishnan P, Beum PV, Tan S, Cheng PW (2007) Butyrate induces sLex synthesis by stimulation of selective glycosyltransferase genes. Biochem Biophys Res Commun 359(3):457–462. https://doi.org/10.1016/j.bbrc.2007.05.165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Basu SC (1991) The serendipity of ganglioside biosynthesis: pathway to CARS and HY-CARS glycosyltransferases. Glycobiology 1(5):469–475

    Article  CAS  PubMed  Google Scholar 

  33. Basu S, Ma R, Moskal JR, Basu M, Banerjee S (2012) Apoptosis of breast cancer cells: modulation of genes for glycoconjugate biosynthesis and targeted drug delivery. Adv Exp Med Biol 749:233–255. https://doi.org/10.1007/978-1-4614-3381-1_16

    Article  PubMed  CAS  Google Scholar 

  34. Rapport MM, Schneider H, Graf L (1962) Immunochemical studies of organ and tumor lipids. XI. A simplified preparation of cytolipin H. J Biol Chem 237:1056–1059

    PubMed  CAS  Google Scholar 

  35. Kaufman B, Basu S, Roseman S (1966) Embryonic chicken brain sialyltransferases. Methods In Enzymol. 8:365-368

    Google Scholar 

  36. Das KK, Basu M, Basu S, Chou DK, Jungalwala FB (1991) Biosynthesis in vitro of GlcA beta 1-3nLcOse4Cer by a novel glucuronyltransferase (GlcAT-1) from embryonic chicken brain. J Biol Chem 266(8):5238–5243

    PubMed  CAS  Google Scholar 

  37. Moskal JR, Gardner DA, Basu S (1974) Changes in glycolipid glycosyltransferases and glutamate decarboxylase and their relationship to differentiation in neuroblastoma cells. Biochem Biophys Res Commun 61(2):751–758

    Article  CAS  PubMed  Google Scholar 

  38. Yeung KK, Moskal JR, Chien JL, Gardner DA, Basu S (1974) Biosynthesis of globoside and Forssman-related glycosphingolipid in mouse adrenal Y-1 tumor cells. Biochem Biophys Res Commun 59(1):252–260

    Article  CAS  PubMed  Google Scholar 

  39. Basu S, Basu M, Higashi H, Evans CH (1982) Biosynthesis and characterization of globoside and Forssman glycosphingolipids in guinea pig tumor cells. In: Makita A, Handa S, Taketomi T, Nagai Y (eds) New vistas in glycolipid research. Plenum, New York, pp 131–137

    Google Scholar 

  40. Chatterjee S, Kolmakova A, Rajesh M (2008) Regulation of lactosylceramide synthase (glucosylceramide beta1→4 galactosyltransferase); implication as a drug target. Curr Drug Targets 9(4):272–281

    Article  CAS  PubMed  Google Scholar 

  41. Jenis DM, Basu S, Pollard M (1982) Increased activity of a beta-galactosyltransferase in tissues of rats bearing prostate and mammary adenocarcinomas. Cancer Biochem Biophys 6(1):37–45

    PubMed  CAS  Google Scholar 

  42. Fukushi Y, Kannagi R, Hakomori S, Shepard T, Kulander BG, Singer JW (1985) Location and distribution of difucoganglioside (VI3NeuAcV3III3Fuc2nLc6) in normal and tumor tissues defined by its monoclonal antibody FH6. Cancer Res 45(8):3711–3717

    PubMed  CAS  Google Scholar 

  43. Nishida K, Yamamoto H, Ohtsuki T, Matsuba M, Mukai S, Naito Y, Yoshikawa T, Kondo M (1991) Elevated tissue concentrations of sialyl Lex-i in cancerous tissues compared with those in noncancerous tissues of various organs. Cancer 68(1):111–117

    Article  CAS  PubMed  Google Scholar 

  44. Ogiso M, Shogomori H, Hoshi M (1998) Localization of LewisX, sialyl-LewisX and alpha-galactosyl epitopes on glycosphingolipids in lens tissues. Glycobiology 8(1):95–105

    Article  CAS  PubMed  Google Scholar 

  45. Koprowski H, Steplewski Z, Mitchell K, Herlyn M, Herlyn D, Fuhrer P (1979) Colorectal carcinoma antigens detected by hybridoma antibodies. Somatic Cell Genet 5(6):957–971

    Article  CAS  PubMed  Google Scholar 

  46. Hakomori S, Nudelman E, Levery SB, Kannagi R (1984) Novel fucolipids accumulating in human adenocarcinoma. I. Glycolipids with di- or trifucosylated type 2 chain. J Biol Chem 259(7):4672–4680

    PubMed  CAS  Google Scholar 

  47. Hakomori SI, Handa K (2015) GM3 and cancer. Glycoconj J 32(1-2):1–8. https://doi.org/10.1007/s10719-014-9572-4

    Article  PubMed  CAS  Google Scholar 

  48. Kroes RA, Panksepp J, Burgdorf J, Otto NJ, Moskal JR (2006) Modeling depression: social dominance-submission gene expression patterns in rat neocortex. Neuroscience 137(1):37–49. https://doi.org/10.1016/j.neuroscience.2005.08.076

    Article  PubMed  CAS  Google Scholar 

  49. Basu S, Schultz A, Basu M, Roseman S (1971) Enzymatic synthesis of galactocerebroside by a galactosyltransferase from embryonic chicken brain. J Biol Chem 243:4272–4279

    Google Scholar 

  50. Chien JL, Williams T, Basu S (1973) Biosynthesis of a globoside-type glycoshingolipid by an b-N-acetylgalactosaminyltransferase from embryonic chicken brain. J Biol Chem 248:1778-1785

    Google Scholar 

  51. Basu M, Basu S (1984) Biosynthesis in vitro of Ii-core glycolipids from neolactotetraosylceramide by b-1 and b1-6 Nacetylglucosaminyltransferases from mouse T-lymphoma. J Biol Chem 259:12557–12562

    Google Scholar 

  52. Basu S, Basu M, Chien JL (1975)Enzymatic synthesis of blood group H-related glycosphingolipid by an α-fucosyltransferase from bovine spleen. J Biol Chem 250:2956–2962

    Google Scholar 

  53. Basu S (1966) Ph.D. Thesis, University of Michigan. Studies on the biosynthesis of gangliosides.

    Google Scholar 

  54. Kaufman B, Basu S, Rosenman S (1968) Enzymatic synthesis of disialogangliosides from monosialogangliosides by sialyltransferases from embryonic chicken brain. J Biol Chem 243:5804-5806

    Google Scholar 

Download references

Acknowledgment

We thank Mrs. Dorisanne Nielsen and Mr. Eric Kuehner for their help during preparation of the manuscript. The Jacob Javits Research Award from NIH-NINDS NS-18005, Coleman Cancer Foundation, and NCI grant-CA-14764 to S. Basu; and a grant-in-aid from Siemens Corporation to M. Basu supported this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Basu, S., Agarwal, A., Basu, M., Ma, R., Moskal, J.R. (2018). Protocols for Glycosyltransferase Assays: Ganglioside Globoside and Lewis-X Intermediate-Lactosylceramide Biosyntheses in Eukaryotic Systems. In: Sonnino, S., Prinetti, A. (eds) Gangliosides. Methods in Molecular Biology, vol 1804. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8552-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8552-4_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8551-7

  • Online ISBN: 978-1-4939-8552-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics