Skip to main content
Log in

The chlorophyll fluorescence quenching and changes of absorbance in pea chloroplasts

  • Published:
Photosynthetica

Abstract

Chlorophyll (Chl) fluorescence quenching parameters were measured in dark-adapted pea leaves and chloroplasts with the purpose to find the conditions of high and low non-photochemical quenching, that would be stable during a prolonged irradiation. A PAM fluorometer was used for measuring induction curves in the range of actinic radiation of 3-35 W m-2, with an ordinary value of about 15 W m-2. The effects of various mediators, i.e., ascorbate, methyl viologen (MV), dithiothreitol (DTT) and nigericin, on the quenching process were tested. Simultaneously, the absorbance was measured during a 15-20 min period of irradiation and after the actinic radiation was turned off, i.e., in the recovery period. The pH values of chloroplast suspensions were 5.5, 6.5 and 8.0, the largest non-photochemical quenching was observed at pH of 6.5. The irradiation of chloroplasts led to an absorption decrease within the entire photosynthetically active range, attaining saturation when the fluorescence reached Fs level, and to an absorption increase during the recovery period. Absorbance changes at the maximum of red band were 10-20 %. A decrease in Chl concentration (10 %) after irradiation was found only at pH of 5.5, when the recovery time was the longest, i.e., about 60 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barber, J.: Surface electrical charges and protein phosphorylation.-In: Staehelin, L.A., Arntzen, C.J. (ed.): Photosynthesis III. Pp. 653-664. Springer-Verlag, Berlin-Heidelberg-New York 1986.

    Google Scholar 

  • Bennett, J.: Regulation of photosynthesis by reversible phosphorylation of the light-harvesting chlorophyll a/b protein.-Biochem. J. 212: 1-13, 1983.

    PubMed  CAS  Google Scholar 

  • Bilger, W., Björkman, O.: Relationships among violaxanthin de-epoxidation, thylakoid membrane conformation, and nonphotochemical chlorophyll fluorescence quenching in leaves of cotton (Gossypium hirsutum L.).-Planta 193: 238-246, 1994.

    Article  CAS  Google Scholar 

  • Bilger, W., Björkman, O., Thayer, S.S.: Light-induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of xanthophyll cycle components in cotton leaves.-Plant Physiol. 91: 542-551, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Bilger, W., Schreiber, U.: Energy dependent quenching of dark level chlorophyll fluorescence in intact leaves.-Photosynth. Res. 10: 303-308, 1986.

    Article  CAS  Google Scholar 

  • Briantais, J.-M., Vernotte, C., Picaud, M., Krause, G.H., Weis, E.: A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts.-Biochim. biophys. Acta 548: 128-138, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Chylla, R.A., Garab, G., Whitmarsh, J.: Evidence for slow turnover in a fraction of Photosystem II complexes in thylakoid membranes.-Biochim. biophys. Acta 894: 562-571, 1987.

    Article  CAS  Google Scholar 

  • Cosgrove, S.A., Guite, M.A., Burnell, T.B., Christensen, R.L.: Electronic relaxation in long polyenes.-J. phys. Chem. 94: 8118-8124, 1990

    Article  CAS  Google Scholar 

  • Dainese, P., Marquardt, J., Pineau, B., Bassi, R.: Identification of violaxanthin and zeaxanthin binding proteins in maize photosystem II.-In: Murata, N. (ed.): Research in Photosynthesis. Vol. I. Pp. 287-290. Kluver Acad. Publ., Dordrecht-Boston-London 1992.

    Google Scholar 

  • Demmig, B., Winter, K., Krüger, A., Czygan, F.-C.: Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of excess light energy.-Plant Physiol. 84: 218-224, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams, B.: Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin.-Biochim. biophys. Acta 1020: 1-24, 1990.

    Article  CAS  Google Scholar 

  • Duysens, L.N.M., Sweers, H.E.: Mechanism of two photochemical reactions in algae as studied by mean of fluorescence.-In: Studies on Microalgae and Photosynthetic Bacteria. Pp. 353-372. Univ. Tokyo Press, Tokyo 1963.

    Google Scholar 

  • Gilmore, A.M., Yamamoto, H.Y.: Zeaxanthin formation and energy-dependent fluorescence quenching in pea chloroplasts under artificially mediated linear and cyclic electron transport.-Plant Physiol. 96: 635-643, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Gilmore, A.M., Yamamoto, H.Y.: Dark induction of zeaxanthin-dependent nonphotochemical fluorescence quenching mediated by ATP.-Proc. nat. Acad. Sci. USA 89: 1899-1903, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Hagen, C., Pascal, A.A., Horton, P., Inoue, Y.: Influence of structural changes in the photosynthetic antenna system on the thermoluminescence Z-band.-Photosynthetica 32: 529-543, 1996.

    CAS  Google Scholar 

  • Hager, A.: The reversible, light-induced conversions of xanthophylls in the chloroplast.-In: Czygan, F.C. (ed.): Pigments in Plants. 2nd Ed. Pp. 57-59. G. Fisher, Stuttgart-New York 1980; Akademie-Verlag, Berlin 1981.

    Google Scholar 

  • Horton, P., Ruban, A.V., Rees, D., Pascal, A.A., Noctor, G., Young, A.J.: Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll-protein complex.-FEBS Lett. 292: 1-4, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Jennings, R.C., Garlaschi, F.M., Zucchelli, G.: Light-induced fluorescence quenching in the light-harvesting chlorophyll a/b protein complex.-Photosynth. Res. 27: 57-64, 1991.

    Article  CAS  Google Scholar 

  • Klimov, V.V., Allakhverdiev, S.I., Pashchenko, V.Z.: [Measurements of activation energy and life time of chlorophyll fluorescence of photosystem 2.]-Dokl. Akad. Nauk SSSR 242: 1204-1208, 1978. [In Russ.]

    CAS  Google Scholar 

  • Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: The basics.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313-349, 1991.

    Article  CAS  Google Scholar 

  • Krieger, A., Moya, I., Weis, E.: Energy-dependent quenching of chlorophyll a fluorescence: effect of pH on stationary fluorescence and picosecond-relaxation kinetics in thylakoid membranes and Photosystem 2 preparations.-Biochim. biophys. Acta 1102: 167-176, 1992.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H.K.: The Kautsky effect: 60 years of chlorophyll fluorescence induction kinetics.-Photosynthetica 27: 45-55, 1992.

    CAS  Google Scholar 

  • Mullineaux, C.W., Pascal, A.A., Horton, P., Holzwarth, A.R.: Excitation-energy quenching in aggregates of LHC II chlorophyll-protein complex: a time-resolved fluorescence study.-Biochim. biophys. Acta 1141: 23-28, 1993.

    Article  CAS  Google Scholar 

  • Neubauer, C., Yamamoto, H.Y.: Mehler peroxidase reaction mediates zeaxanthin formation and zeaxanthin-related fluorescence guenching in intact chloroplasts.-Plant Physiol. 99: 1354-1361, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Owens, T.G., Shreve, A.P., Albrecht, A.C.: Dynamics and mechanism of singlet energy transfer between carotenoids and chlorophylls: light-harvesting and non-photochemical fluorescence quenching.-In: Murata, N. (ed.): Research in Photosynthesis. Vol. 1. Pp. 179-186. Kluwer Acad. Publishers, Dordrecht-Boston-London 1992.

    Google Scholar 

  • Pfündel, E.E., Dilley, R.A.: The pH dependence of violaxanthin deepoxidation in isolated pea chloroplasts.-Plant Physiol. 101: 65-71, 1993.

    PubMed  Google Scholar 

  • Purcell, K., Carpentier, R.: Homogeneous photobleaching of chlorophyll holochromes in a photosystem I reaction center complex.-Photochem. Photobiol. 59: 215-218, 1994.

    Article  CAS  Google Scholar 

  • Ruban, A.V., Rees, D., Pascal, A.A., Horton, P.: Mechanism of ΔpH-dependent dissipation of absorbed excitation energy by photosynthetic membranes. II. The relationship between LHCII aggregation in vitro and qE in isolated thylakoids.-Biochim. biophys. Acta 1102: 39-44, 1992.

    Article  CAS  Google Scholar 

  • Staehelin, L.A., Arntzen, C.J.: Regulation of chloroplast membrane function: protein phosphorylation changes spatial organization of membrane components.-J. Cell Biol. 97: 1327-1337, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Telfer, A., He, W.-Z., Barber, J.: Spectral resolution of more than one chlorophyll electron donor in the isolated Photosystem II reaction centre complex.-Biochim. biophys. Acta 1017: 143-151, 1990.

    Article  CAS  Google Scholar 

  • Ting, C.S., Owens, T.G.: Photochemical and nonphotochemical fluorescence quenchmq processes in the diatom Phaeodactylum tricornutum.-Plant Physiol. 101: 1323-1330, 1993.

    PubMed  CAS  Google Scholar 

  • Witt, N.T.: Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods. The central role of the electric field.-Biochim. biophys. Acta 505: 355-427, 1979.

    PubMed  CAS  Google Scholar 

  • Yamamoto, H.Y., Kamite, L.: The effects of dithiothreitol on violaxanthin deepoxidation and absorbance changes in the 500-nm region.-Biochim. biophys. Acta 267: 538-543, 1972.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganago, I. The chlorophyll fluorescence quenching and changes of absorbance in pea chloroplasts. Photosynthetica 34, 281–291 (1998). https://doi.org/10.1023/A:1006852926489

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006852926489

Navigation