Skip to main content
Log in

Contribution of Electron Paramagnetic Resonance to the studies of hemoglobin: the Nitrosylhemoglobin System

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Since the initial work of Ingram (8,10) Electron Paramagnetic Resonance contributed considerably to research in hemoglobins. Now, 40 years later we review some of the results of the application of EPR to nitrosylhemoglobin (HbNO), as an example of the diversity of information which this technique can provide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dickerson RE & Geis I (1983) Hemoglobin: Structure, function, evolution and pathology. The Benjamin/Cummins Publ. Co

  2. As reported by L. Pauling in Proc. Natl. Ac. Sci. USA 22, 210 (1936)

    Article  CAS  Google Scholar 

  3. Pauling L & Coryell CD (1936) The Magnetic properties and structure of the hemochromogens and related substances. Proc. Natl. Ac. Sci. USA 22: 159

    Article  CAS  Google Scholar 

  4. Pauling I & Coryell CD (1936) The magnetic properties and structure of the hemoglobin, oxyhemoglobin and carbonmonoxy hemoglobin. Proc. Natl. Ac. Sci. USA 22: 210–216

    Article  CAS  Google Scholar 

  5. Corycll CD, Pauling L. & Dodson R (1939) The magnetic properties of intermediates in the reactions of hemoglobin. J. Phys. Chem. 43: 825–839

    Article  Google Scholar 

  6. Kendrew JC (1950) The crystal structure of horse metmyoglobin. General features: the arrangement of the polypeptide chains. Proc. Roy. Soc. A 201, 62–89

    CAS  Google Scholar 

  7. Boyes-Watson J, Davidson E & Perutz MF (1947) An x-ray study of horse methaemoglobin. Proc. Roy. Soc. A, 191, 83–129

    CAS  Google Scholar 

  8. Ingram DJE & Bennett JE (1955) Paramagnetic resonance in phtalocyanine, hemoglobin, and other organic derivatives. Disc. Faraday, Soc. 19, 140–146.

    Article  Google Scholar 

  9. Zavoisky E (1945) Paramagnetic relaxation of liquid solutions for perpendicular fields. J. Phys. USSR, 9, 211

    Google Scholar 

  10. Benett JE, Gibson JF & Ingram DJE (1957) Electron resonance studies of haemoglobin derivatives. I. Haem plane orientations. Proc. Roy. Soc. A 240, 67–82

    Google Scholar 

  11. Perutz MF (1989) Mechanism of cooperativity and allosteric regulation in proteins. Quart. Rev. Bioph. 22, 139–236

    Article  CAS  Google Scholar 

  12. Chien JCW (1969) EPR study of stereochemistry of Nitrosylhemoglobin. J Chem Phys 51, 4220–4227

    Article  PubMed  CAS  Google Scholar 

  13. Dickson LC& Chien JC (1979) Electron Paramagnetic Resonance of single crystal 15N-Nitrosyl-57 Femyoglobin. Biochem. Biophys. Res. Comm. 59, 1292–1297

    Article  Google Scholar 

  14. Sugita Y (1975) Difference in spectra of α and β chains of hemoglobin between isolated state and in tetramer. Jour. Biol. Chem. 250, 1251–1256

    CAS  Google Scholar 

  15. Nagai K, Hori H, Yoshida S, Sakamoto H & Morimoto H (1978) The effect of quaternary structure on the state of the α and β subunits within nitrosyl haemoglobin. Biophys. Acta 532, 17–28

    CAS  Google Scholar 

  16. Frauenfelder H, Sligar S & Wolynes P (1991) The energy landscape and motions of proteins. Science 254, 1598–1603

    PubMed  CAS  Google Scholar 

  17. Benesch R & Benesch RE (1967) The effect of organic phosphates from human erythrocyte on the allosteric properties of hemoglobin. Biochem. Biophys. Res. Comm. 26, 162–167

    Article  CAS  Google Scholar 

  18. Monod J, Wyman J & Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 22, 88–1

    Article  Google Scholar 

  19. Trittelvitz E, Gersonde K & Winterhalter K (1975) ESR of Nitrosyl Haemoglobins: Normal α and β chains and mutants Hb M Iwate and Hb Zurich. Eur. J. Biochem. 51, 33–42

    Article  PubMed  CAS  Google Scholar 

  20. Szabo A & Perutz MF (1976) Equilibrium between six and five-coordinated hemes in nitrosylhemoglobin: interpretation of electron spin resonance spectra. Biochem. 15, 4427–4428

    Article  CAS  Google Scholar 

  21. Twilfer H & Gersonde K (1976) Non-equivalence and inverse allosteric response of the α and β chains in hemoglobins. An electron spin resonance study of NO-ligated Hb Kansas. Naturforsch. 31C, 661–674

    Google Scholar 

  22. Morse R & Chan S (1980) EPR studies of nitrosyl ferrous heme complexes. Determination of an equilibrium between two conformations. Jour. Biol. Chem. 255, 7876–7882 (1980)

    CAS  Google Scholar 

  23. Neto LM, Nascimento O, Tabak M & Caracelli I (1988) The mechanismof reaction of nitrosylwithmet and oxymyoglobin: an EPR study. Biochem. Biophys. Acta, 956, 189–196

    PubMed  CAS  Google Scholar 

  24. Sanches R (1988) Dehydration effects on the heme environment of nitric oxide hemoglobin. Biochem. Biophys. Acta 955, 310–314

    PubMed  CAS  Google Scholar 

  25. Wajnberg E, El-Jaick L, Linhares M & Bemski G (1992) Nitrosyl hemoglobin: EPR components at low temperature. Eur. Biophys. J. 21, 57–61

    Article  PubMed  CAS  Google Scholar 

  26. Steinbach P, Ansari A, Berendzen J, Braunstein D, Chu K, Cowen B, Ehrenstein D, Frauenfelder H, Johnson JB, Lamb D, Luck S, Mourant J, Nienhaus U, Ormos P, Philipp R, Xie A & Young R (1991) Ligand binding to heme proteins: connection between dynamics and function. Biochem. 30, 3988–4001

    Article  CAS  Google Scholar 

  27. Linhares M, El-Jaick L, Bemski G & Wajnberg E (1990) EPR studies of photolysis of nitrosyl hemoglobin at low temperature. Int. J. Biol. Macromol. 12, 59–63

    Article  PubMed  CAS  Google Scholar 

  28. Doetschman D, Schwartz S & Utterback S (1980) The electron spin distribution in nitrosyl hemoglobin. Chem. Phys. J. 49, 1–8

    Article  CAS  Google Scholar 

  29. Waleh A, Ho N, Chantranupong L & Loew GH (1989) Electron structure of NO-ferrous heme complexes. J. Am. Chem. Soc. 111, 2767–2772

    Article  CAS  Google Scholar 

  30. Feher G (1956) Observation of nuclear magnetic resonances via the electron spin resonance line. Phys. Rev. 103, 834–835

    Article  CAS  Google Scholar 

  31. Feher G, Isaacson RA, Scholes CP & Nagel R (1973) Electronnuclear double resonance investigation on myoglobin and hemoglobin. Ann. N.Y. Acad. Sci. 222, 86–101

    PubMed  CAS  Google Scholar 

  32. Höhn M, Hütterman J, Chien JCW & Dickinson LC (1983) 14N and 1H ENDOR of nitrosyllhemoglobin. J. Am. Chem. Soc. 105, 109–115

    Article  Google Scholar 

  33. Kappl R & Hütterman J (1989) in Advanced EPR application in biology and biochemistry. ed. A.J. Hoff, Elsevier

  34. Hütterman J, Burgard C & Kappl R (1994) Proton ENDOR from randomly orientated NO-ligated haemoglobin: approaching the structural basis for the R-T transition. J. Chem. Soc. Faraday Trans. 90: 3077–3087

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bemski, G. Contribution of Electron Paramagnetic Resonance to the studies of hemoglobin: the Nitrosylhemoglobin System. Mol Biol Rep 24, 263–269 (1997). https://doi.org/10.1023/A:1006842816800

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006842816800

Navigation