Skip to main content
Log in

Diel vertical migration of zooplankton: optimum migrating schedule based on energy accumulation

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Zooplankton perform diel vertical migration (DVM) to avoid predators at the upper water layer, but often stay in the upper water layer throughout the day seeking food in spite of the presence of predators. This difference in migrating behavior has been explained by differences in environmental conditions or genetic differences. We examined theoretically how nutritious conditions of zooplankton individuals relate to determining different migrating behavior. A simple optimization model, maximizing the population growth rate, demonstrates that zooplankton individuals change their migrating behavior depending on the amount of accumulated energy. Such energy accumulation and its investment in reproduction are repeated every reproductive cycle. Therefore, unless the reproductive cycle is synchronized among individuals, different migrating behaviors will be observed within a population even if no genetic differences exist. Our model demonstrates that such coexistence of the two migrating behaviors is possible in natural Daphnia populations, and suggests that internal conditions of zooplankton individuals may be important as a factor for determining migrating behavior of zooplankton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bollens, S.M. and Frost, B.W. (1991) Ovigerity, selective predation, and variable diel vertical migration in Euchaeta elongata (Copepoda: Clanoida). Oecologia 87, 155–161.

    Article  Google Scholar 

  • Bottrell, H.H., Duncan, A., Gliwicz, Z.M., Grygierek, E., Herzig, A., Hillbricht-Ilkowska, A., Kurasawa, H., Larsson, P. and Weglenska, T. (1976) A review of some problems in zooplankton production studies. Norw. J. Zool. 24, 419–456.

    Google Scholar 

  • Brooks, J.L. and Dodson, S.I. (1965) Predation, body size, and composition of plankton. Science 150, 28–35.

    PubMed  Google Scholar 

  • Byron, E.R., Sawyer, P.E. and Goldman, C.R. (1986) The recurrence of Daphnia rosea in Lake Tahoe: analysis of a population pulse. J. Plankton Res. 8, 771–783.

    Google Scholar 

  • Gushing, D.H. (1951) The vertical migration of planktonic Crustacea. Biol. Rev. 26, 158–192.

    Google Scholar 

  • De Meester, L. (1993) Genotype, fish-mediated chemicals, and phototactic behavior in Daphnia magna. Ecology 74, 1467–1474.

    Article  Google Scholar 

  • De Meester, L., Weider, L.J. and Tollrian, R. (1995) Alternative antipredator defenses and genetic polymorphism in a pelagic predator-prey system. Nature 378, 483–485.

    Article  CAS  Google Scholar 

  • Duncan, A., Guisande, C. and Lampert, W. (1993) Further trade-offs in Daphnia vertical migration strategies. Arch. Hydrobiol. Beih. 39, 99–108.

    Google Scholar 

  • Fiksen, Ø. (1997) Allocation patterns and diel vertical migration: modeling the optimal Daphnia. Ecology 78, 1446–1456.

    Article  Google Scholar 

  • Fiksen, Ø. and Giske, J. (1995) Vertical distribution and population dynamics of copepods by dynamic optimization. ICES J. Mar. Sci. 52, 483–503.

    Article  Google Scholar 

  • Gabriel, W. and Thomas, B. (1988a) Vertical migration of zooplankton as an evolutioarily stable strategy. Am. Nat. 132, 199–216.

    Article  Google Scholar 

  • Gabriel, W. and Thomas, B. (1988b) The influence of food availability, predation risk, and metabolic costs on the evolutionary stability of diel vertical migration in zooplankton. Verh. Internat. Verein. Limnol. 23, 807–811.

    Google Scholar 

  • Green, J. (1957) Carotenoids in Daphnia. Proc. R. Soc. Lond. Ser. B 147, 392–401.

    Article  CAS  Google Scholar 

  • Guisande, C., Duncan, A. and Lampert, W. (1991) Trade-offs in Daphnia vertical migration strategies. Oecologia 87, 357–359.

    Article  Google Scholar 

  • Hall, D.J. (1964) An experimental approach to the dynamics of a natural population of Daphnia galeata mendotae. Ecology 45, 94–112.

    Article  Google Scholar 

  • Hays, G.C., Proctor, C.A., John, W.G. and Warner, A.J. (1994) Interspecific difference in the diel vertical migration of marine copepods: The implications of size, color, and morphology. Limnol. Oceanogr. 39, 1621–1629.

    Article  Google Scholar 

  • Hovenkamp, W. (1991) How useful are laboratory-determined growth curves for the estimation of size-specific mortalities in Daphnia populations? J. Plankton Res. 13, 353–361.

    Google Scholar 

  • Huntley, M. and Brooks, E.R. (1982) Effects of age and food availability on diel vertical migration of Calanus pacificus. Mar. Biol. 71, 23–31.

    Article  Google Scholar 

  • Hutchinson, G.E. (1967) A treatise on limnology, vol. II. Wiley, New York, USA.

    Google Scholar 

  • Iwasa, Y. (1982) Vertical migration of zooplankton: A game between predator and prey. Am. Nat. 120, 171–180.

    Article  Google Scholar 

  • Johnsen, G.H. and Jakobsen, P.J. (1987) The effect of food limitation on vertical migration in Daphnia longispina. Limnol. Oceanogr. 32, 873–880.

    Google Scholar 

  • Kerfoot, W.C. (1985) Adaptive value of vertical migration: Comments on the predation hypothesis and some alternatives. Contr. Mar. Sci. 27, 91–113.

    Google Scholar 

  • Lampert, W. (1987) Vertical migration of freshwater zooplankton: Indirect effects of vertebrate predators on algal communities. In W.C. Kerfoot and A. Sih (eds.) Predation. University Press of New England, Hanover, N.H, USA, pp. 291–229.

    Google Scholar 

  • Lampert, W. (1989) The adaptive significance of diel vertical migration of zooplankton. Funct. Ecol. 3, 21–27.

    Article  Google Scholar 

  • Lampert, W. (1991) The dynamics of Daphnia magna in shallow lake. Verh. Internat. Verein. Limnol. 24, 795–798.

    Google Scholar 

  • Lampert, W. (1993) Ultimate causes of diel vertical migration of zooplankton: New evidence for the predator-avoidance hypothesis. Arch. Hydrobiol. Beih. 39, 79–88.

    Google Scholar 

  • Lueck, C., Vanni, M.J., Magnuson, J.J., Kitchell, J.F. and Jacobson, P.T. (1990) Seasonal regulation of Daphnia populations by planktivorous fish: Implications for the spring clear-water phase. Limnol. Oceanogr. 35, 1718–1733.

    Google Scholar 

  • McLaren I.A. (1963) Effects of temperature on growth of zooplankton and adaptive value of vertical migration. J. Fish. Res. Bd. Canada 20, 685–727.

    Google Scholar 

  • McLaren, I.A. (1974) Demographic strategy of vertical migration by a marine copepod. Am. Nat. 108, 91–102.

    Article  Google Scholar 

  • Müller, J. and Seitz, A. (1993) Habitat partitioning and differential vertical migration of some Daphnia genotypes in a lake. Arch. Hydrobiol. Beih. 39, 167–174.

    Google Scholar 

  • Orcutt, J.D., Jr. and Porter, K.G. (1983) Diel vertical migration by zooplankton: Constant and fluctuating temperature effects on life history parameters of Daphnia. Limnol. Oceanogr. 28, 720–730.

    Google Scholar 

  • Ringelberg, J. (1991) A mechanism of predator-mediated induction of diel vertical migration in Daphnia hyalina. J. Plankton Res. 13, 83–89.

    Google Scholar 

  • Ringelberg, J., Flik, B.J.G., Lindenaar, D. and Royackers, K. (1991) Diel vertical migration of Daphnia hyalina (sensu latiori) in Lake Maarsseveen: Part 2. Aspects of population dynamics. Arch. Hydrobiol. 122, 385–401.

    Google Scholar 

  • Sekino, T. and Yoshioka, T. (1995) The relationship between nutritional condition and diel vertical migration of Daphnia galeata. Jpn. J. Limnol. 56, 145–150.

    Google Scholar 

  • Stich, H.-B. and Lampert, W. (1981) Predator evasion as an explanation of diurnal vertical migration by zooplankton. Nature 293, 396–398.

    Article  Google Scholar 

  • Spaak, P. and Hoekstra, J.R. (1993) Clonal structure of the Daphnia population in Lake Maarsseveen: Its implications for diel vertical migration. Arch. Hydrobiol. Beih. 39, 157–165.

    Google Scholar 

  • Stearns, S.C. (1976) Life-history statics: a review of ideas. Q. Rev. Biol. 51, 2–47.

    Article  Google Scholar 

  • Tessier, A.J. and Goulden, C.E. (1982) Estimating food limitation in cladoceran populations. Limnol. Oceanogr. 27, 707–717.

    Google Scholar 

  • Threlkeld, S.T. (1979) Estimating cladoceran birth rates: The importance of egg mortality and the egg age distribution. Limnol. Oceanogr. 24, 601–612.

    Google Scholar 

  • Walters, C.J., Robinson, D.C.E. and Northcote, T.G. (1990) Comparative population dynamics of Daphnia rosea and Holopedium gibberum in four oligotrophic lakes. Can. J. Fish. Aquat. Sci. 47, 401–409.

    Article  Google Scholar 

  • Weider, L.J. (1984) Spatial heterogeneity of Daphnia genotypes: Vertical migration and habitat partitioning. Limnol. Oceanogr. 29, 225–235.

    Google Scholar 

  • Wright, D., O'Brien, W.J. and Vinyard, G.L. (1980) Adaptive value of vertical migration: a simulation model argument for the predation hypothesis. In: W.C. Kerfoot (ed.) Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, N.H., USA, pp. 138–147.

    Google Scholar 

  • Zaret, T.M. and Kerfoot, W.C. (1975) Fish predation on Bosmina longirostris: Body-size selection versus visibility selection. Ecology 56, 232–237.

    Article  Google Scholar 

  • Zaret, T.M. and Suffern, J.S. (1976) Vertical migration in zooplankton as a predator avoidance mechanism. Limnol. Oceanogr. 21, 804–813.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekino, T., Yamamura, N. Diel vertical migration of zooplankton: optimum migrating schedule based on energy accumulation. Evolutionary Ecology 13, 267–282 (1999). https://doi.org/10.1023/A:1006797101565

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006797101565

Navigation