Skip to main content
Log in

Rheological Properties of Nanosized AlN Powder Suspensions for Advanced Ceramics

  • Published:
Mechanics of Composite Materials Aims and scope

Abstract

The rheological properties (flow curves and viscoelastic behavior) of injection molding suspensions of a plasma-processed AlN nanosized powder (nanopowder) in paraffin are investigated over a broad range of shear rates (0.07–1350 s−1). Two viscosity plateaux are observed on the flow curves and two values of the yield stress are obtained. The lower value of the strain amplitude (0.66%), exceeding the linearity limit of periodic shear, is restricted by the rheometer resolution. The ultrasound treatment and shear deformation of suspensions affect the structure of particle packing, which is responsible for the dependence of their rheological properties on the prehistory of mechanical actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. Kubo, K. Itatani, F. S. Howell, A. Kishioka, and M. Kinoshita, “Some properties of aluminum-nitride powder prepared by metal-organic chemical vapour deposition,” J. Europ. Ceram. Sci., 15, 661–666 (1995).

    Google Scholar 

  2. E. Palcevskis, “Ceramics from fine plasma processed AlN powder,” in: Materials Engineering-98. Mater. VII Int. Baltic Conf., Riga (1998), pp. 30–35.

  3. R. M. German, R. F. Hens, and S.-T. P. Lin, “Key issues in powder injection molding,” Am. Ceram. Soc. Bull., 70, No. 8, 1294–1302 (1991).

    Google Scholar 

  4. R. M. German and A. Bose, Injection Molding of Metals and Ceramics, Metal Powder Industries Federation, Priceton (1997).

    Google Scholar 

  5. Z. Zupancic, R. Lapasin, and A. Kristoffersson, “Influence of particle concentration on rheological properties of aqueous α-Al2O3 suspensions,” J. Europ. Ceram. Soc., 18, 467–477 (1998).

    Google Scholar 

  6. M. G. Tsiprin and L. A. Faitel'son, “Nonlinear periodic deformation of thixotropic media,” Polym. Mech., 8, No. 4, 595–600 (1972).

    Google Scholar 

  7. J. L. Harden and M. Doi, “The effect of added triblock copolymer on the nonlinear rheology of ordered diblock copolymer mesophasis,” J. Rheol., 40, 187–197 (1996).

    Google Scholar 

  8. M. K. Chow and C. F. Zukoski, “Nonequilibrium behavior of dense suspensions of uniform particles: Volume fraction and size dependence of rheology and microstructure,” J. Rheol., 39, No. 1, 33–59 (1995).

    Google Scholar 

  9. T. C. Lubensky and P. A. Pincus, “Superpolymers, ultraweak solids and aggregates,” Physics Today, No. 10, 44 (1984).

  10. J. D. Ferry, Viscoelastic Properties of Polymers, John Wiley & Sons, New York (1970).

    Google Scholar 

  11. R. Lapasin and S. Pricl, Rheology of Industrial Polysaccharides: Theory and Applications, Plackie Academic & Professional, London (1995).

    Google Scholar 

  12. R. Umeya and S. Tanifuji, “Flow properties of some suspending systems,” Rheologica Acta, 13, 681–688 (1974).

    Google Scholar 

  13. B. J. Ackerson and P. N. Pusey, “Shear induced order in suspensions of hard spheres,” Phys. Rev. Lett., 61, 1033–1036 (1988).

    PubMed  Google Scholar 

  14. M. K. Chow and C. F. Zukoski, “Gap size and shear history dependencies in shear thickening of a suspension ordered of rest,” J. Rheol., 39, No. 1, 15–32 (1995).

    Google Scholar 

  15. B. V. Vinogradov and A. Ya. Malkin, Rheology of Polymers [in Russian], Mir, Moscow (1980).

    Google Scholar 

  16. P. Gao, Chan Chi-Kwong, and C. K. Chai, “Effect of TLCP inclusion on the flow behavior of high molecular mass polyethylene,” in: Proc. XIII Int. Congr. Rheology, Cambridge, August 2000. Vol. 1 (2000), pp. 136–138.

    Google Scholar 

  17. C. D. Han, Multiphase Flow in Polymer Processing, Academic Press, New York (1981).

    Google Scholar 

  18. L. A. Faitel'son and E. E. Yakobson, “Rheology of filled polymers. Steady-state shear flow and periodic deformation. 1. Relaxation time spectra. Viscosity,” Polym. Mech., 13, No. 6, 898–906 (1977).

    Google Scholar 

  19. L. E. Silbert, J. R. Melrose, and R. C. Ball, “The rheology and microstructure of concentrated, aggregated colloids,” J. Rheol., 43, No. 3, 673–700 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palcevskis, E., Jakobsons, E. & Faitel'son, L. Rheological Properties of Nanosized AlN Powder Suspensions for Advanced Ceramics. Mechanics of Composite Materials 36, 501–508 (2000). https://doi.org/10.1023/A:1006766802274

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006766802274

Navigation