Skip to main content
Log in

Neutron Activation Techniques in Environmental Studies

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The development over time in applications of nuclear activation techniques in environmental studies is critically reviewed. A vast majority of the work has been based on activation analysis using thermal and sometimes epithermal neutrons from nuclear reactors (NAA). Whereas radiochemical methods were frequently used until about 1975, the work reported more recently has mainly been multi-element studies based on instrumental NAA. The by far most successful application has been the analysis of aerosol samples, but considerable work has also been done in other areas such as precipitation and surface waters, soils, vascular plants, moss and lichen biomonitors, and fossil fuels with by-products. Some interesting examples of speciation analysis, based on pre-irradiation separations, have also been reported. Rapid development in alternative multi-element techniques such as ICP-MS has shown these techniques to be superior in a number of cases where NAA earlier was the technique of choice. Areas where efforts should be concentrated in future NAA work are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Maenhaut, Intern. J. of PIXE, 2 (1992) 609.

    Google Scholar 

  2. Y. Liu, Z. Guo, X. Liu, T. Qu, J. Xie, Pure Appl. Chem., 66 (1994) 305.

    Google Scholar 

  3. K. Casteleyn, K. Strukmans, R. Dams, Nucl. Instr. Meth., B68 (1992) 161.

    Google Scholar 

  4. K. Masumoto, T. Othsuki, Y. Miyamoto, J. H. Zaidi, A. Kajikawa, H. Haba, K. Sakamoto, J. Radioanal. Nucl. Chem., 239 (1999) 495.

    Google Scholar 

  5. W. H. Zoller, G. E. Gordon, Anal. Chem., 42 (1970) 257.

    PubMed  Google Scholar 

  6. R. Dams, J. A. Robbins, K. A. Rahn, J. W. Winchester, Anal. Chem., 42 (1970) 861.

    PubMed  Google Scholar 

  7. C. Block, R. Dams, Anal. Chim. Acta, 68 (1973) 11.

    Google Scholar 

  8. B. Salbu, E. Steinnes, A. C. Pappas, Anal. Chem., 47 (1975) 1011.

    Google Scholar 

  9. E. Steinnes, in: A. O. Brunfelt and E. Steinnes (Eds), Activation Analysis in Geochemistry and Cosmochemistry, Universtitetsforlaget, Oslo 1971, p. 113.

    Google Scholar 

  10. A. O. Brunfelt, E. Steinnes, Anal. Chim. Acta, 48 (1969) 13.

    Google Scholar 

  11. E. Steinnes, J. J. Rowe, Anal. Chim. Acta, 87 (1976) 451.

    PubMed  Google Scholar 

  12. J. J. Rowe, E. Steinnes, Talanta, 24 (1977) 433.

    Google Scholar 

  13. M. V. Frontasyeva, V. M. Nazarov, E. Steinnes, J. Radioanal. Nucl. Chem., 181 (1994) 363.

    Google Scholar 

  14. T. Westermark, B. SjÖstrand, Intern. J. Appl. Radiation Isotopes, 9 (1960) 1.

    Google Scholar 

  15. H. J. M. Bowen, P. A. Cawse, Analyst, 88 (1963) 721.

    Google Scholar 

  16. L. Moens, R. Dams, J. Radioanal. Nucl. Chem., 192 (1995) 29.

    Google Scholar 

  17. W. C. Cunningham, W. H. Zoller, J. Aerosoi Sci., 12 (1981) 367.

    Google Scholar 

  18. K. A. Rahn, D. H. Lowenthal, Science, 223 (1984) 132.

    Google Scholar 

  19. W. Maenhaut, G. Ducastel, R. E. Hillamo, T. A. Pakkanen, J. M. Pacyna, J. Radioanal. Nucl. Chem., 167 (1993) 271.

    Google Scholar 

  20. E. Steinnes, J. Radioanal. Chem., 58 (1980) 387.

    Google Scholar 

  21. M. De Bruin, E. Hackenitz, Environ. Pollut., Ser. B, 11 (1986) 153.

    Google Scholar 

  22. E. Steinnes, J. E. Hanssen, J. P. RambÆk, Environ. Pollut., 88 (1995) 67.

    PubMed  Google Scholar 

  23. G. Capannesi, S. Caroli, A. Rosada, J. Radioanal. Nucl. Chem., 123 (1988) 713.

    Google Scholar 

  24. A. Wyttenbach, S. Bajo, L. Tobler, Plant and Soil, 85 (1985) 313.

    Google Scholar 

  25. A. Wyttenbach, S. Bajo, L. Tobler, M. Adam, H. W. ZÖttl, in: Applications of Isotopes and Radiation in Conservation of the Environment, International Atomic Energy Agency, Vienna 1992, p. 535.

    Google Scholar 

  26. D. H. Peirson, P. A. Cawse, L. Salmon, R. S. Cambray, Nature, 241 (1973) 252.

    Google Scholar 

  27. S. Landsberger, J. E. Jervis, S. Monaro, in: Trace Analysis, Vol. 4, Academic Press, New York, 1985, p. 237.

    Google Scholar 

  28. K. H. Lieser, V. Neitzert, J. Radioanal. Chem., 31 (1976) 397.

    Google Scholar 

  29. A. A. Smales, B. D. Pate, Analyst, 77 (1952) 188.

    Google Scholar 

  30. O. T. HØgdahl, S. Melsom, V. T. Bowen, ACS Adv. Chem. Series, 73 (1968) 308.

    Google Scholar 

  31. H. V. Kazemi, J. S. Morris, S. H. Anderson, C. J. Ganter, G. A. Buyanovsky, J. Radioanal. Nucl. Chem., 235 (1998) 249.

    Google Scholar 

  32. E. Steinnes, in: C. Karr (Ed.), Analytical Methods for Coal and Coal Products, Vol. III, Academic Press, New York, 1979, p. 274.

    Google Scholar 

  33. K. R. Shah, R. H. Filby, W. A. Haller, J. Radioanal. Chem., 6 (1970) 413.

    Google Scholar 

  34. R. H. Filby, S. D. Olsen, J. Radioanal. Nucl. Chem., 180 (1994) 285.

    Google Scholar 

  35. R. P. Murrman, R. W. Winters, T. G. Martin, Soil Sci. Soc. Amer. Proc., 35 (1971) 647.

    Google Scholar 

  36. L. Salmon, P. A. Cawse, in: K. A. Smith (Ed.), Soil Analysis, Marcel Dekker, New York, 1983, p. 299.

    Google Scholar 

  37. S. Bajo, A. Wyttenbach, L. Tobler, H. Conradin, J. Radioanal. Nucl. Chem., 134 (1989) 181.

    Google Scholar 

  38. S. Ohno, M. Yatazawa, Radioisotopes (Tokyo), 19 (1970) 565.

    Google Scholar 

  39. J. LÅg, E. Steinnes, Geoderma, 16 (1976) 317.

    Google Scholar 

  40. A. A. Smales, B. D. Pate, Analyst, 77 (1952) 188.

    Google Scholar 

  41. H. J. M. Bowen, J. A. Dymond, Proc. R. Soc., B144 (1955) 355.

    Google Scholar 

  42. M. Koyama, M. Shirakawa, J. Takade, Y. Katayama, T. Matsubara, J. Radioanal. Nucl. Chem., 112 (1987) 489.

    Google Scholar 

  43. W. HÖfner, E. SchaumlÖffel, K. VÖlker, Planta, 57 (1961) 608.

    Google Scholar 

  44. P. Fawcett, D. Green, G. Shaw, Radiochem. Radioanal. Lett., 8 (1971) 37.

    Google Scholar 

  45. S. Landsberger, D. Wu, J. Radioanal. Nucl. Chem., 193 (1995) 49.

    Google Scholar 

  46. D. A. Becker, R. R. Greenberg, S. F. Stone, J. Radioanal. Nucl. Chem., 160 (1992) 41.

    Google Scholar 

  47. P. Benes, E. Steinnes, Water Res., 9 (1975) 741.

    Google Scholar 

  48. B. Salbu, Microchim. Acta, II (1991) 29.

    Google Scholar 

  49. Z. Slejkovec, A. R. Byrne, M. Dermelj, J. Radioanal. Nucl. Chem., 173 (1993) 357.

    Google Scholar 

  50. S. Yoshida, Y. Muramatsu, J. Radioanal. Nucl. Chem., 196 (1995) 295.

    Google Scholar 

  51. G. Lunde, E. Steinnes, Environ. Sci. Technol., 9 (1975) 155.

    Google Scholar 

  52. J. Gether, G. Lunde, E. Steinnes, Anal. Chim. Acta, 108 (1979) 137.

    Google Scholar 

  53. P. K. G. Manninen, E. HÄsÄnen, J. Radioanal. Nucl. Chem., 167 (1993) 353.

    Google Scholar 

  54. J. W. Kiceniuk, B. Zwicker, A. Chatt, J. Radioanal. Nucl. Chem., 235 (1998) 291.

    Google Scholar 

  55. M. Rossbach, Anal. Chem., 63 (1991) 2156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinnes, E. Neutron Activation Techniques in Environmental Studies. Journal of Radioanalytical and Nuclear Chemistry 243, 235–239 (2000). https://doi.org/10.1023/A:1006764624405

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006764624405

Keywords

Navigation