Skip to main content
Log in

Viscosity Prediction for Natural Gas Mixtures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The viscosity of multicomponent natural gas-mixtures containing hydrocarbons (C1 through C7) is predicted by modifying a previously published dilute-gas viscosity model and extending its applicability to a wide range of temperature and pressure conditions including liquid and gas states. Nitrogen, oxygen, carbon dioxide, and helium are also included among components of mixtures for which published viscosity data are available. The approach takes advantage of currently available formulations and models for the density and viscosity of pure fluid constituents of natural gases. The predicted viscosity is compared with available data in both gas and liquid regions. Comparisons of calculated values to the available measurements of viscosity of natural gas mixtures and of binary, ternary, and quaternary mixtures of constituent fluids are summarized to illustrate the accuracy of the predicted values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. W. Lemmon and R. T Jacobsen, Int. J. Thermophys. 20:825 (1999).

    Google Scholar 

  2. D. L. Katz and R. L. Lee, Natural Gas Engineering (McGraw–Hill, New York 1990), pp. 148–153.

    Google Scholar 

  3. F. Herning and L. Zipperer, Gas Wasserfach 79:69 (1936).

    Google Scholar 

  4. J. F. Ely and H. J. M. Hanley, I&Fundam. 20:323 (1981).

    Google Scholar 

  5. A. S. Teja and P. Rice, Ind. Eng. Chem. Fundam. 20:77 (1981).

    Google Scholar 

  6. N. L. Carr, R. Kobayashi, and D. B. Burrows, Petrol. Trans. AIME 201:264 (1954).

    Google Scholar 

  7. J. Lohrenz, B. G. Bray, and C. R. Clark, J. Petrol. Tech. 231:1171 (1964).

    Google Scholar 

  8. A. S. Teja and I. Thurner, Chem. Eng. Commun. 49:69 (1986).

    Google Scholar 

  9. U. Setzmann and W. Wagner, J. Phys. Chem. Ref. Data 20:1061 (1991).

    Google Scholar 

  10. D. G. Friend, H. Ingham, and J. F. Ely, J. Phys. Chem. Ref. Data 20:275 (1991).

    Google Scholar 

  11. B. A. Younglove and J. F. Ely, J. Phys. Chem. Ref. Data 16:577 (1987).

    Google Scholar 

  12. K. E. Starling, Fluid Thermodynamic Properties for Light Petroleum Systems (Gulf, Houston, TX, 1973).

    Google Scholar 

  13. R. Span and W. J. Wagner, J. Phys. Chem. Ref. Data 25:1509 (1996).

    Google Scholar 

  14. R. Span, E. W. Lemmon, R. T Jacobsen, and W. Wagner, Int. J. Thermophys. 19:1121 (1998).

    Google Scholar 

  15. R. D. McCarty and R. D. Arp, Adv. Cryo. Eng. 35:1465 (1990).

    Google Scholar 

  16. R. Schmidt and W. Wagner, Fluid Phase Equil. 19:175 (1985).

    Google Scholar 

  17. D. G. Friend, J. F. Ely, and H. Ingham, J. Phys. Chem. Ref. Data 18:583 (1989).

    Google Scholar 

  18. E. Vogel, C. Kuchenmeister, and E. Bich, J. Phys. Chem. Ref. Data 27:947 (1998).

    Google Scholar 

  19. A. Fenghour and W. A. Wakeham, J. Phys. Chem. Ref. Data 27:31 (1998).

    Google Scholar 

  20. Z. Shan, R. T Jacobsen, and S. G. Penoncello, Adv. Cryo. Eng. 45B:1229 (2000).

    Google Scholar 

  21. R. D. McCarty, NBS Technical Note 631 (1972).

  22. E. T. S. Huang, G. W. Swift, and F. Kurata. AIChE J. 12:932 (1966).

    Google Scholar 

  23. J. P. Boon, J. C. Legros, and G. Thomaes, Physica 33:547 (1967).

    Google Scholar 

  24. J. G. Giddings T. T. F. Kao, and R. Kobayashi, J. Chem. Phys. 45:578 (1966).

    Google Scholar 

  25. D. E. Diller, Physica A 104:417 (1980).

    Google Scholar 

  26. L. T. Carmichael, V. Berry, and B. H. Sage, J. Chem. Eng. Data 10:57 (1965).

    Google Scholar 

  27. N. L. Carr, Inst. Gas Technol. Res. Bull. 23:1 (1953).

    Google Scholar 

  28. P. S. Van der Gulik, R. Mostert, and H. R. Van den Berg, Physica A 151:153 (1988).

    Google Scholar 

  29. L. T. Carmichael and B. H. Sage, J. Chem. Eng. Data 8:94 (1963).

    Google Scholar 

  30. D. E. Diller and J. M. Saber, Physica A 108:143 (1981).

    Google Scholar 

  31. D. E. Diller and J. F. Ely, High Temp. High Press. 21:613 (1989).

    Google Scholar 

  32. B. E. Eakin, K. E. Starling, J. P. Dolan, and R. T. Ellington, J. Chem. Eng. Data 7:33 (1962).

    Google Scholar 

  33. J. Kestin, H. E. Khalifa, and W. A. Wakeham, J. Chem. Phys. 66:1132 (1977).

    Google Scholar 

  34. W. Herreman, W. Grevendonk, and A. De Bock, J. Chem. Phys. 53:185 (1970).

    Google Scholar 

  35. K. S. Van Dyke, Phys. Rev. 21:250 (1923).

    Google Scholar 

  36. D. E. Diller and M. J. Ball, Int. J. Thermophys. 6:619 (1985).

    Google Scholar 

  37. A. Michels, A. Botzen, and W. Schuurman, Physica 23:95 (1957).

    Google Scholar 

  38. A. Padua, W. A. Wakeham, and J. Wilhelm, Int. J. Thermophys. 15:767 (1994).

    Google Scholar 

  39. J. A. Gracki, G. P. Flynn, and J. Ross, J. Chem. Phys. 51:3856 (1969).

    Google Scholar 

  40. A. L. Lee, M. H. Gonzalez, and B. E. Eakin, Trans. AIME 997 (1966).

  41. W. B. Berwald and T. W. Johnson, U.S. Bur. Mines Tech. Paper 555 (1933).

  42. Y. Abe, J. Kestin, and H. E. Khalifa, Physica A 93:155 (1978).

    Google Scholar 

  43. J. Kestin and S. T. Ro, Ber. Bunsenges. Phys. Chem. 78:20 (1974).

    Google Scholar 

  44. D. E. Diller, J. Chem. Eng. Data 29:215 (1984).

    Google Scholar 

  45. E. T. S. Huang, G. W. Swift, and F. Kurata, AIChE J. 13:846 (1967).

    Google Scholar 

  46. J. Kestin and J. Yata, J. Chem. Phys. 49:4780 (1968).

    Google Scholar 

  47. K. J. DeWitt and G. Thodos, Can. J. Chem. 44:148 (1966).

    Google Scholar 

  48. J. Bzowski, J. Kestin, E. A. Mason and F. J. Uribe, J. Phys. Chem. Ref. Data 19:1179 (1990).

    Google Scholar 

  49. D. E. Diller, Int. J. Thermophys. 3:237 (1982).

    Google Scholar 

  50. D. E. Diller, L. J. Van Poolen, and F. dos Santos, J. Chem. Eng. Data 33:460 (1988).

    Google Scholar 

  51. Y. Abe, J. Kestin and H. E. Khalifa, Ber. Bunsenges. Phys. Chem. 83:271 (1979).

    Google Scholar 

  52. L. T. Carmichael and B. H. Sage, AIChE J. 12:559 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, Z., Jacobsen, R.T. & Penoncello, S.G. Viscosity Prediction for Natural Gas Mixtures. International Journal of Thermophysics 22, 73–87 (2001). https://doi.org/10.1023/A:1006736931228

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006736931228

Navigation