Skip to main content
Log in

Flows Through Porous Media: A Theoretical Development at Macroscale

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Good separation of microscale with macroscale leads to the existence of a macroscale description of flows through porous media. Such a macroscale description is developed in a systematic and rigorous way through exploiting necessary and sufficient condition for three fundamental principles regarding physical relations: principle of frame-indifference, principle of observer transformation and second law of thermodynamics. This leads to a generalized Darcy's law, an algebraic ∇pvL relation at macroscale with effects of G and M reflected in three material coefficients. Here ∇p is piezometric pressure gradient. G denotes macroscale geometric properties of the medium. M stands for thermophysical (material) properties of the medium and fluids. v is the fluid velocity vector relative to the solid. L is the velocity gradient tensor of the fluid velocity u. Such a generalized relation can be used for both low and high flow rates. Also developed in the present work is a linear theory to simplify the works of determining effects of G and M.

It is found that ∇p cannot depend on fluid velocity u itself. L affects ∇p only through its symmetric part (velocity strain tensor D). The symmetry and positive-definiteness of H, the inverse of permeability tensor, follow logically from the three fundamental principles. Eigenvectors of H are the same as those of D with corresponding eigenvalues related to those of D through a quadratic relation. Six scalars formed by v and D (rather than the Reynolds number) are found to be scalars characterizing convective inertia effects. The incompressibility is found to be responsible for the vanishing of the first correction term to the classical Darcy's law as the Reynolds number tends to zero. The vanishing of D forms the applicability condition of classical Darcy's law. This requires u to be vanished, uniform, or in rigid body rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achanta, S. and Cushman, J. H.: 1994, Non-equilibrium swelling and capillary pressure relations for colloidal systems, J. Colloid Interface Sci. 168, 266-268.

    Google Scholar 

  • Achanta, S., Cushman, J. H. and Okos, M. R.: 1994, On multicomponent, multiphase thermomechanics with interfaces, Int. J. Engng Sci. 32, 1717-1738.

    Google Scholar 

  • Auriault, J. L.: 1980, Dynamic behavior of a porous medium saturated by a Newtonian fluid, Int. J. Engng Sci. 18, 775-785.

    Google Scholar 

  • Auriault, J. L.: 1991, Heterogeneous medium: Is an equivalent macroscopic description possible?, Int. J. Engng Sci. 29, 785-795.

    Google Scholar 

  • Auriault, J. L., Borne, L. and Chambon, R.: 1985, Dynamics of porous saturated media, checking of the generalized law of Darcy, J. Acoust. Soc. Am. 77, 1641-1650.

    Google Scholar 

  • Bear, J.: 1972, Dynamics of Fluids in Porous Media, Elsevier, Amsterdam.

    Google Scholar 

  • Bedford, A. and Drumheller, D. S.: 1983, Theories of immiscible and structured mixtures, Int. J. Engng Sci. 21, 863-960.

    Google Scholar 

  • Bennethum, L. S. and Cushman, J. H.: 1996a, Multiscale hybrid mixture theory for swelling systems: Part I. Balance laws, Int. J. Engng Sci. 34, 125-145.

    Google Scholar 

  • Bennethum, L. S. and Cushman, J. H.: 1996b, Multiscale hybrid mixture theory for swelling systems: Part II. Constitutive theory, Int. J. Engng Sci. 34, 147-169.

    Google Scholar 

  • Bowen, R. M.: 1976, Theory of mixtures, In: A. C. Eringen (ed.), Continuum Physics, Vol. 3, Academic Press, New York.

    Google Scholar 

  • Bowen, R. M.: 1982, Compressible porous media models by the use of the theory of mixtures, Int. J. Engng Sci. 20, 697-735.

    Google Scholar 

  • Chauveteau, G.: 1965, Essai Sur la loi de Darcy, Thése Université de Toulouse.

  • Coleman, B. D. and Noll, W.: 1963, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rat. Mech. Anal. 13, 168-178.

    Google Scholar 

  • Darcy, H.: 1856, Fontaines Publiques de la Ville de Dijon, Libraire des Corps. Impériaux des Ponts et Chaussées et des Mines, Paris.

    Google Scholar 

  • Dobran, F.: 1984, Constitutive equations for multiphase mixtures of fluids, Int. J. Multiphase Flow 10, 273-305.

    Google Scholar 

  • Drew, D. A.: 1971, Averaged field equations for two-phase media, Studies Appl. Math. 50, 133-166.

    Google Scholar 

  • Ene, H. I. and Sanchez-Palencia, E.: 1975, Equations et phénomènes de surface pour l'ècoulement dans un modèle de milieux poreux, J. Méc. 14, 73-108.

    Google Scholar 

  • Firdaouss, M., Guermond, J. and Quéré, P. L.: 1997, Nonlinear corrections to Darcy's law at low Reynolds numbers, J. Fluid Mech. 343, 331-350.

    Google Scholar 

  • Gray, W. G. and Hassanizadeh, S.M.: 1989, Averaging theorems and averaged equations for transport of interface properties in multiphase systems, Int. J. Multiphase Flow 15, 81-95.

    Google Scholar 

  • Gray, W. G. and Hassanizadeh, S. M.: 1991a, Paradoxes and realities in unsaturated flow theory, Water Resour. Res. 27, 1847-1854.

    Google Scholar 

  • Gray, W. G. and Hassanizadeh, S. M.: 1991b, Unsaturated flow theory including interfacial phenomena, Water Resour. Res. 27, 1855-1863.

    Google Scholar 

  • Gray, W. G., Leijnse, A., Kolar, R. L. and Blain, C. A.: 1993, Mathematical Tools for Changing Spatial Scales in the Analysis of Physical Systems, CRC.

  • Goyeau, B., Benihaddadene, T., Gobin, D. and Quintard, M.: 1997, Averaged momentum equation for flow through a nonhomogenenous porous structure, Transport in Porous Media 28, 19-50.

    Google Scholar 

  • Hannoura, A. A. and Barends, F.: 1981, Non-Darcy flow: a state of the art, In: A. Veruijt and F. B. J. Banrends (eds), Flow and Transport in Porous Media, Balkema, Ratterdam.

    Google Scholar 

  • Haro, M. L., Rio, J. A. and Whitaker, S.: 1996, Flow of Maxwell fluids in porous media, Transport in Porous Media 25, 167-192.

    Google Scholar 

  • Hassanizadeh, M. and Gray, W. G.: 1979a, General conservation equations for multiphase systems: 1. Averaging procedure, Adv. Water Resour. 2, 131-144.

    Google Scholar 

  • Hassanizadeh, M. and Gray, W. G.: 1979b, General conservation equations for multiphase systems: 2. Mass, momenta, energy, and entropy equations, Adv. Water Resour. 2, 191-208.

    Google Scholar 

  • Hassanizadeh, M. and Gray, W. G.: 1980, General conservation equations for multiphase systems: 3. Constitutive theory for porous media, Adv. Water Resour. 3, 25-40.

    Google Scholar 

  • Hassanizadeh, M. and Gray, W. G.: 1990, Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries, Adv. Water Resour. 13, 169-186.

    Google Scholar 

  • Hazen, A.: 1895, The Filtration of Public Water-Supplies, Wiley, New York.

    Google Scholar 

  • Ishii, M.: 1975, Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris.

    Google Scholar 

  • Kaviany, M.: 1995, Principles of Heat Transfer in Porous Media, Springer.

  • Kovacs, G.: 1981, Seepage Hydraulics, Elsevier, Amsterdam.

    Google Scholar 

  • Lasseux, D., Quintard, M. and Whitaker, S.: 1996, Determination of permeability tensors for twophase flow in homogeneous porous media: theory, Transport in Porous Media 24, 107-137.

    Google Scholar 

  • Marle, C. M.: 1982, On macroscopic equations governing multiphase flow with diffusion and chemical reactions in porous media, Int. J. Engng Sci. 20, 643-662.

    Google Scholar 

  • Mei, C. C. and Auriault, J. L.: 1989, Mechanics of heterogeneous porous media with several spatial scales, Proc. R. Soc. Lond. A 426, 391-423.

    Google Scholar 

  • Mei, C. C. and Auriault, J. L.: 1991, The effect of weak inertia on flow through a porous medium, J. Fluid Mech. 222, 647-663.

    Google Scholar 

  • Prévost, J.: 1980, Mechanics of continuous porous media, Int. J. Engng Sci. 18, 787-800.

    Google Scholar 

  • Murad, M. A., Bennethum, L. S. and Cushman, J. H.: 1995, A multiscale theory of swelling porous media I: Application to one-dimensional consolidation, Transport in Porous Media 19, 93-122.

    Google Scholar 

  • Murad, M. A. and Cushman, J. H.: 1996, Multiscale flow and deformation in hydrophilic swelling porous media, Int. J. Engng Sci. 34, 313-336.

    Google Scholar 

  • Nigmatulin, R. I.: 1979, Spatial averaging in the mechanics of heterogeneous and dispersed systems, Int. J. Multiphase Flow 5, 353-385.

    Google Scholar 

  • Quintard, M. and Whitaker, S.: 1993, One-and two-equation models for transient diffusion processes in two-phase systems, Adv. Heat Transfer 23, 369-464.

    Google Scholar 

  • Quintard, M. and Whitaker, S.: 1994a, Transport in ordered and disordered porous media II: Generalized volume averaging, Transport in Porous Media 14, 179-206.

    Google Scholar 

  • Quintard, M. and Whitaker, S.: 1994b, Transport in ordered and disordered porous media III: Closure and comparison between theory and experiment, Transport in Porous Media 15, 31-49.

    Google Scholar 

  • Quintard, M. and Whitaker, S.: 1996, Transport in chemically and mechanically heterogeneous porous media I: Theoretical development of region-averaged equations for slightly compressible single-phase flow, Adv. Water Resour. 19, 29-47.

    Google Scholar 

  • Sampaio, R. and Williams, W. O.: 1979, Thermodynamics of diffusing mixtures, J. de Mecanique 18, 19-45.

    Google Scholar 

  • Scheidegger, A. E.: 1960, The Physics of Flow through Porous Media, University of Toronto.

  • Thigpen, L. and Berryman, J. G.: 1985, Mechanics of porous material containing multiphase fluid, Int. J. Engng Sci. 23, 1203-1214.

    Google Scholar 

  • Truesdell, C.: 1966, Six Lectures on Modern Natural Philosophy, Springer, pp. 6, 97.

  • Truesdell, C.: 1977, A First Course in Rational Continuum Mechanics, Academic Press, New York, pp. 37-50.

    Google Scholar 

  • Truesdell, C.: 1984, Rational Thermodynamics, 2nd edn, Springer-Verlag, pp. 230-232.

  • Whitaker, S.: 1969, Advances in theory of fluid motion in porous media, Ind. Engng Chem. 61, 14-28.

    Google Scholar 

  • Whitaker, S.: 1986, Flow in porous media I: A theoretical derivation of Darcy's law, Transport in Porous Media 1, 3-25.

    Google Scholar 

  • Whitaker, S.: 1996, The Forchheimer equation: A theoretical development, Transport in Porous Media 25, 27-61.

    Google Scholar 

  • Williams, W. O.: 1978, Constitutive equations for flow of an incompressible fluid through a porous medium, Quart. Appl. Math. 36, 255-267.

    Google Scholar 

  • Wodie, J. C. and Levy, T.: 1991, Correction non linéaire de la loi de Darcy, C.R. Acad. Sci. Paris II 312, 157-161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L. Flows Through Porous Media: A Theoretical Development at Macroscale. Transport in Porous Media 39, 1–24 (2000). https://doi.org/10.1023/A:1006647505709

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006647505709

Navigation