Skip to main content
Log in

Effective Diffusivities of Point-Like Molecules in Isotropic Porous Media by Monte Carlo Simulation

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Monte Carlo simulations of point-like molecules in random and structured media are used to determine and characterize the effective diffusion coefficients of the molecules in the media. Simulations were carried out in 2D and 3D media. Monte Carlo simulation results in 2D and 3D media are compared with those obtained by analytical techniques. Simulation results indicate that for the structured, isotropic media the effective diffusivities can be characterized according to percolation thresholds in addition to porosity. The effective diffusivities in two isotropic media with the same porosity but different percolation thresholds can differ significantly. The effects of dimensionality on the effective diffusivities can also be significant. It is shown that in general the effective diffusion coefficients obtained from 2D simulation are not a good approximation to those of 3D, especially when the percolation thresholds of the 2D media and the 3D media are very different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi, M. H., Evans, J. W. and Abramson, I. S.: 1983, Diffusion of gases in porous solids: Monte Carlo Simulations in the Knudsen and Ordinary Regimes, AIChE J. 29, 617-624.

    Google Scholar 

  • Anderson, T. B. and Jackson, R.: 1967, A fluid mechanical description of fluidized beds, Ind. Engng Chem. Fundam. 6, 527-533.

    Google Scholar 

  • Baumgärtner, A. and Muthukumar, M.: 1987, A trapped polymer chain in random porous media, J. Chem. Phys. 87, 3082-3088.

    Google Scholar 

  • Binder, K. and Heermann, D. W.: 1992, Monte Carlo Simulation in Statistical Physics, 2nd edn, Springer-Verlag.

  • Bird, R. B., Stewart, W. E. and Lightfoot, E. N.: 1960, Transport Phenomena, Wiley, p. 593.

  • Brenner, H. 1980, Dispersion resulting from flow through spatially periodic porous media, Phil. Trans. R. Soc. London A 297, 81-133.

    Google Scholar 

  • Burganos, V. N. and Sotirchos, S. V.: 1988, Simulation of Knudsen diffusion in random networks of parallel pores, Chem. Engng Sci. 43, 1685-1694.

    Google Scholar 

  • Burganos, V. N. and Sotirchos, S. V.: 1989, Of Knudsen diffusion in parallel, multidimensional or randomly oriented capillary structures, Chem. Engng Sci. 44, 2451-2462.

    Google Scholar 

  • Currie, J. A. 1960: Gaseous diffusion in porous media. Part I - A non-steady state method, Brit. J. Appl. Phys. 11, 314-324.

    Google Scholar 

  • Chang, H.-C.: 1982, Multiscale analysis of effective transport in periodic heterogeneous media, Chem. Engng Comm. 15, 83-91.

    Google Scholar 

  • Edwards, D. A., Shapiro, M., Brenner, H. and Shapira, M.: 1991, Dispersion of inert solutes in periodic, two-dimensional model porous media, Transport in Porous Media 6, 337-358.

    Google Scholar 

  • Einstein, A.: 1926, Investigations on the theory of Brownian movement, Dover, New York.

    Google Scholar 

  • Evans, J. W., Abbasi, M.H. and Sarin, A.: 1980, A Monte Carlo simulation of the diffusion of gases in porous solid, J. Chem. Phys. 75, 2967.

    Google Scholar 

  • Faley, T. L. and Strieder, W., 1987, Knudsen flow through a random bed of unidirectional fibers, J. Appl. Phys. 62, 4394-4396.

    Google Scholar 

  • Faley, T. L. and Strieder, W.: 1988, The effect of random fiber orientation of Knudsen permeabilities J. Chem. Phys. 89, 6936-6940.

    Google Scholar 

  • Hoogschagen, J.: 1955, Diffusion in porous catalysts and adsorbents, Ind. Engng Chem. 47, 906-913.

    Google Scholar 

  • Kim, I. C., Torquato, S.: 1990, Determination of the effective conductivity of heterogeneous media by Brownian motion simulation, J. Appl. Phys. 68, 3892-3903.

    Google Scholar 

  • Kim, J. H., Ochoa, J. A. and Whitaker, S.: 1987, Diffusion in anisotropic media, Transport in Porous Media 2, 327-356.

    Google Scholar 

  • Maxwell, J. C.: 1881, A Treatise on Electricity and Magnetism I, 2nd edn, Claredon Press, Oxford, p. 440.

    Google Scholar 

  • Monnier, A., Schuth, F., Huo, Q., Kumar, D., Margolese, D., Maxwell, R. S., Stucky, G. D., Krishnamurty, M., Petroff, P., Firouzi, A., Janicke, M. and Chmelka, B. F.: 1993, Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures, Science 261, 1299-1303.

    Google Scholar 

  • Muthukumar, M. and Baumgärtner, A.: 1989a, Effects of entropic barriers on polymer dynamics, Macromolecules 22, 1937-1941.

    Google Scholar 

  • Muthukumar, M. and Baumgärtner, A.: 1989b, Diffusion of a polymer chain in random media, Macromolecules 22, 1941-1946.

    Google Scholar 

  • Pandey, R. B., Stauffer, D., Margilina, A. and Zabolitzky, J. G.: 1984, Diffusion in three-dimensional random systems above, below and at their percolation threshold in two and three dimensions. J. Stat. Phys. 34, 427-450.

    Google Scholar 

  • Quintard, M.: 1993, Diffusion in isotropic and anisotropic porous systems: three-dimensional calculations, Transport in Porous Media 11, 187-199.

    Google Scholar 

  • Rayleigh, Lord: 1892, On the influence of obstacles arranged in rectangular order upon the properties of a medium, Phil. Mag. 34, 481-503.

    Google Scholar 

  • Riley, R. M., Muzzio, F. J., Buettner, H. and Reyes, S. C.: 1995, Diffusion in heterogeneous media: application to immobilized cell systems, AIChE J. 41, 691-700.

    Google Scholar 

  • R. L. Rill, Locke, B. R., Liu, Y., Dharia, J. and Van Winkle, D.: 1996, Protein electrophoresis in polyacrylamide gels with templated pores, Electrophoresis 17, 1304-1312.

    Google Scholar 

  • R. L. Rill, Van Winkle, D. and Locke, B. R.: 1998, Templated pores in hydrogels for improved size selectivity in gel permeation chromatography, Anal. Chem. 70(13), 2433-2438.

    Google Scholar 

  • Roman, H. E.: 1990, Diffusion in three-dimensional random system at their percolation threshold, J. Stat. Phys. 58, 375-382.

    Google Scholar 

  • Rothman, D. H.: 1988, Cellular automata fluids: a model for flow in porous media, GeoPhysics 53, 509-518.

    Google Scholar 

  • Ryan, D., Carbonell, R. G. and Whitaker, S.: 1981, A theory of diffusion and reaction in porous media, AIChE Symposium Series, 46-62.

  • Saez, A. E., Perfetti, J. C. and Rusinek, I.: 1991, Prediction of effective diffusivities in porous media using spatially periodic models, Transport in Porous Media 6, 143-157.

    Google Scholar 

  • Sahimi, M. and Stauffer, D.: 1991, Efficient simulation of flow and transport in porous media, Chem. Engng Sci. 9, 2225-2233.

    Google Scholar 

  • Sahimi, M.: 1992, Transport of molecules in porous media, J. Chem. Phys. 96, 4718-4728.

    Google Scholar 

  • Sandry, T. D. and Stevenson, F. D.: 1970, Molecular conductance from a curved surface through a cylindrical hole by Monte Carlo methods, J. Chem. Phys. 53, 151.

    Google Scholar 

  • Slattery, J. C.: 1969, Single-phase flow through porous media, AIChE J. 15, 866-872.

    Google Scholar 

  • Sternberg, S. P. K., Cushman, J. H. and Greenkorn, R. A.: 1996, Random walks in prefractal porous media, AIChE J. 42, 921-926.

    Google Scholar 

  • Stauffer, D.: 1992, Introduction to Percolation Theory, 2nd edn, Taylor & Francis, London.

    Google Scholar 

  • Tomadakis, M. M. and Sotirchos, S. V.: 1991a, Effective Knudsen diffusivities in structures of randomly overlapping fibers, AIChE J. 37, 74-86.

    Google Scholar 

  • Tomadakis, M. M. and Sotirchos, S. V.: 1991b, Knudsen diffusivities and properties of structures of unidirectional fibers, AIChE J. 37, 1175-1186.

    Google Scholar 

  • Tomadakis, M. M. and Sotirchos, S. V.: 1993, Ordinary, transition, and Knudsen regime diffusion in random capillary structures, Chem. Engng Sci. 48, 3323-3333.

    Google Scholar 

  • Transvalidou, F. and Sotirchos, S. V.: 1996, Effective diffusion coefficients in square arrays of filament bundles, AIChE J. 42, 2426-2438.

    Google Scholar 

  • Weissberg, H. L.: 1963, Effective diffusion coefficients in porous media, J. Appl. Phys. 34, 297-303.

    Google Scholar 

  • Whitaker, S.: 1967, Diffusion and dispersion in porous media, AIChE J., 420-427.

  • Whitaker, S.: 1969, Advances in theory of fluid motion in porous media, I.E.C. Res. 61, 14-28.

    Google Scholar 

  • Yi, Xiaohua, Shing, K. S. and Sahimi, M.: 1996, Molecular Simulation of adsorption and diffusion in pillared clays, Chem. Engng Sci. 51, 3409-3426.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trinh, S., Arce, P. & Locke, B.R. Effective Diffusivities of Point-Like Molecules in Isotropic Porous Media by Monte Carlo Simulation. Transport in Porous Media 38, 241–259 (2000). https://doi.org/10.1023/A:1006616009669

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006616009669

Navigation