Skip to main content
Log in

Characterizing the cost of oviposition in insects: a dynamic model

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

The development of a consensus model of insect oviposition has been impeded by an unresolved controversy regarding the importance of time costs versus egg costs in mediating the trade-off between current and future reproduction. Here I develop a dynamic optimization model that places time and egg costs in a common currency (opportunity costs expressed as decreased lifetime reproductive success) so that their relative magnitudes can be compared directly. The model incorporates stochasticity in host encounter and mortality risk as well as behavioral plasticity in response to changes in the age and egg load of the ovipositing female. The dynamic model's predictions are congruent with those of a simpler, static model: both time- and egg-mediated costs make important contributions to the overall cost of oviposition. Modest quantitative differences between the costs predicted by the static versus dynamic models show that plasticity of oviposition behavior modulates the opportunity costs incurred by reproducing females. The relative importance of egg-mediated costs increases substantially for oviposition events occurring later in life. I propose that the long debate over how to represent the cost of oviposition should be resolved not by advocating the pre-eminence of one sort of cost above all others, but rather by building models that represent the complementary roles of different costs. In particular, both time and egg costs must be recognized to produce a general model of insect oviposition that incorporates a realistic representation of the cost of reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernays, E.A. (1998) The value of being a resource specialist: behavioral support for a neural hypothesis. Am. Nat. 151, 451–464.

    Article  PubMed  CAS  Google Scholar 

  • Bernays, E.A. and Wcislo, W.T. (1994) Sensory capabilities, information processing, and resource specialization. Quart. Rev. Biol. 69, 187–204.

    Article  Google Scholar 

  • Bjorksten, T.A. and Hoffmann, A.A. (1998) Separating the effects of experience, size, egg load, and genotype on host response in Trichogramma (Hymenoptera: Trichogrammatidae). J. Ins. Behav. 11, 129–148.

    Article  Google Scholar 

  • Carey, J.R., Liedo, P., Muller, H.G., Wang, J.L. and Vaupel, J.W. (1998) Dual modes of aging in Mediterranean fruit fly females. Science 281, 996–998.

    Article  PubMed  CAS  Google Scholar 

  • Carrière, Y. (1998) Constraints on the evolution of host choice by phytophagous insects. Oikos 82, 401–406.

    Google Scholar 

  • Casas, J., Nisbet, R.M., Swarbrick, S. and Murdoch, W.W. (1999) Eggload dynamics and oviposition rate in a wild population of a parasitic wasp. J. Anim. Ecol. (in press).

  • Charnov, E.L. and Skinner, S.W. (1984) Complementary approaches to understanding parasitoid oviposition decisions. Environ. Entomol. 14, 383–391.

    Google Scholar 

  • Courtney, S.P. (1984) The evolution of egg clustering by butterflies and other insects. Am. Nat. 123, 276–281.

    Article  Google Scholar 

  • Courtney, S.P. and Duggan, A.E. (1983) The population biology of the Orange Tip butterfly Anthocharis cardamines in Britain. Ecol. Entomol. 8, 271–281.

    Google Scholar 

  • Cronin, J.T. and Strong, D.R. (1990) Biology of Anagrus delicatus (Hymenoptera: Mymaridae), an egg parasitoid of Prokelisia marginata (Homoptera: Delphacidae). Ann. Entomol. Soc. Am. 83, 846–854.

    Google Scholar 

  • Cronin, J.T. and Strong, D.R. (1993a) Substantially submaximal oviposition rates by a mymarid egg parasitoid in the laboratory and field. Ecology 74, 1813–1825.

    Article  Google Scholar 

  • Cronin, J.T. and Strong, D.R. (1993b) Superparasitism and mutual interference in the egg parasitoid Anagrus delicatus (Hymenoptera: Mymaridae). Ecol. Entomol. 18, 293–302.

    Google Scholar 

  • Cronin, J.T. and Strong, D.R. (1996) Genetics of oviposition success of a thelytokous fairyfly parasitoid, Anagrus delicatus. Heredity 76, 43–54.

    Google Scholar 

  • Cronin, J.T. and Strong, D.R. (1999) Dispersal-dependent oviposition and population dynamics of a host and parasitoid. Am. Nat. 154, 23–36.

    Article  Google Scholar 

  • Dempster, J.P. (1983) The natural control of populations of butterflies and moths. Biol. Rev. 58, 461–481.

    Google Scholar 

  • Dixon, A.F.G. (1998) Aphid Ecology, 2nd edn. Chapman & Hall, London, UK.

    Google Scholar 

  • Driessen, G. and Hemerik, L. (1992) The time and egg budget of Leptopilina clavipes, a parasitoid of larval Drosophila. Ecol. Entomol. 17, 17–27.

    Google Scholar 

  • Ellers, J. (1998) Life-history evolution in the parasitoid Asobara tabida: on the trade-off between reproduction and survival. Ph.D. dissertation, University of Leiden, Leiden, The Netherlands.

    Google Scholar 

  • Ellers, J., van Alphen, J.J.M. and Sevenster, J.G. (1998) A field study of size-fitness relationships in the parasitoid Asobara tabida. J. Anim. Ecol. 67, 318–324.

    Article  Google Scholar 

  • Freeman, B.E. (1976) A spatial approach to insect population dynamics. Nature 260, 240–241.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, B.E. and Geoghagen, A. (1989) A population study in Jamaica on the gall-midge Asphondylia boerhaaviae: a contribution to spatial dynamics. J. Anim. Ecol. 58, 367–382.

    Article  Google Scholar 

  • Freeman B.E. and Ittyeipe, K. (1993) The natural dynamics of the eulophid parasitoid Melittobia australica. Ecol. Entomol. 18, 129–140.

    Google Scholar 

  • Freese, G. and Zwölfer, H. (1996) The problem of optimal clutch size in a tritrophic system: the oviposition strategy of the thistle gallfly Urophora cardui (Diptera, Tephritidae). Oecologia 108, 293–302.

    Google Scholar 

  • Gladstein, D.S., Carlin, N.F., Austad, S.N. and Bossert, W.H. (1991) The need for sensitivity analyses of dynamic optimization models. Oikos 60, 121–126.

    Google Scholar 

  • Glaizot, O. and Arditi, R. (1998) Optimal inspection time in foraging strategies: a model for superparasitism in insect parasitoids. Neth. J. Zool. 48, 121–144.

    Article  Google Scholar 

  • Godfray, H.C.J. (1994) Parasitoids: Behavioral and Evolutionary Ecology. Princeton University Press, Princeton.

    Google Scholar 

  • Heimpel, G.E. and Collier, T.R. (1996) The evolution of host-feeding behaviour in insect parasitoids. Biol. Rev. 71, 373–400.

    Google Scholar 

  • Heimpel, G.E. and Rosenheim, J.A. (1995) Dynamic host-feeding strategies by the parasitoid Aphytis melinus: the choice between current and future reproduction. J. Anim. Ecol. 64, 153–167.

    Article  Google Scholar 

  • Heimpel, G.E. and Rosenheim, J.A. (1998) Egg limitation in parasitoids: a review of the evidence and a case study. Biol. Control 11, 160–168.

    Article  Google Scholar 

  • Heimpel, G.E., Mangel, M. and Rosenheim, J.A. (1998) Effects of time-and egg-limitation on behavior and lifetime reproductive success of a parasitoid in the field. Am. Nat. 152, 273–289.

    Article  PubMed  CAS  Google Scholar 

  • Heimpel, G.E., Rosenheim, J.A. and Mangel, M. (1996) Egg limitation, host quality, and dynamic behavior by a parasitoid in the field. Ecology 77, 2410–2420.

    Article  Google Scholar 

  • Iwasa, Y., Suzuki, Y. and Matsuda, H. (1984) Theory of oviposition strategy of parasitoids. I. Effect of mortality and limited egg number. Theor. Popul. Biol. 26, 205–227.

    Article  PubMed  CAS  Google Scholar 

  • Jaenike, J. (1978) On optimal oviposition behavior in phytophagous insects. Theor. Popul. Biol. 14, 350–356.

    Article  PubMed  CAS  Google Scholar 

  • Jaenike, J. and Papaj, D.R. (1992) Behavioral plasticity and patterns of host use by insects. In B.D. Roitberg and M.B. Isman (eds) Insect Chemical Ecology: an Evolutionary Approach. Chapman & Hall, New York, pp. 245–264.

    Google Scholar 

  • Janz, N. and Nylin, S. (1997) The role of female search behaviour in determining host plant range in plant feeding insects: a test of the information processing hypothesis. Proc. R. Soc. Lond. B. 264, 701–707.

    Article  Google Scholar 

  • Jervis, M.A., Kidd, N.A.C. and Almey, H.E. (1994) Post-reproductive life in the parasitoid Bracon hebetor (Say) (Hym., Braconidae). J. Appl. Entomol. 117, 72–77.

    Article  Google Scholar 

  • Kraaijeveld, A.R. (1999) Kleptoparasitism as an explanation for paradoxical oviposition decisions of the parasitoid Asobara tabida. J. Evol. Biol. 12, 129–133.

    Article  Google Scholar 

  • Levins, R. and MacArthur, R. (1969) An hypothesis to explain the incidence of monophagy. Ecology 50, 910–911.

    Article  Google Scholar 

  • Mangel, M. (1987) Oviposition site selection and clutch size in insects. J. Math. Biol. 25, 1–22.

    Article  Google Scholar 

  • Mangel, M. (1992) Descriptions of superparasitism by optimal foraging theory, evolutionarily stable strategies and quantitative genetics. Evol. Ecol. 6, 152–169.

    Article  Google Scholar 

  • Mangel, M. and Clark, C.W. (1988) Dynamic Modeling in Behavioral Ecology. Princeton University Press, Princeton.

    Google Scholar 

  • Mangel, M. and Heimpel, G.E. (1998) Reproductive senescence and dynamic oviposition behaviour in insects. Evol. Ecol. 12, 871–879.

    Article  Google Scholar 

  • Margolis, J. and Spradling, A. (1995) Identification and behavior of epithelial stem cells in the Drosophila ovary. Development 121, 3797–3807.

    PubMed  CAS  Google Scholar 

  • Mayhew, P.J. (1997) Adaptive patterns of host-plant selection by phytophagous insects. Oikos 79, 4417–4428.

    Google Scholar 

  • McNamara, J.M. and Houston, A.I. (1996) State-dependent life histories. Nature 380, 215–221.

    Article  PubMed  CAS  Google Scholar 

  • Minkenberg, O.P.J.M., Tatar, M. and Rosenheim, J.A. (1992) Egg load as a major source of variability in insect foraging and oviposition behavior. Oikos 65, 134–142.

    Google Scholar 

  • Murdoch, W.W., Briggs, C.J. and Nisbet, R.M. (1997) Dynamical effects of host size-and parasitoid state-dependent attacks by parasitoids. J. Anim. Ecol. 66, 542–556.

    Article  Google Scholar 

  • Murphy, B.C., Rosenheim, J.A., Dowell, R.V. and Granett, J. (1998) Testing a habitat diversification tactic for improving biological control: parasitism of the western grape leafhopper, Erythroneura elegantula (Homoptera: Cicadellidae). Entomol. Exper. Appl. 87, 225–235.

    Article  Google Scholar 

  • Papaj, D.R. and Alonso-Pimentel, H. (1997) Why walnut flies superparasitize: time savings as a possible explanation. Oecologia 109, 166–174.

    Article  Google Scholar 

  • Prokopy, R.J., Roitberg, B.D. and Vargas, R.I. (1994) Effects of egg load on finding and acceptance of host fruit in Ceratitis capitata flies. Physiol. Entomol. 19, 124–132.

    Google Scholar 

  • Quicke, D.L.J. (1997) Parasitic Wasps. Chapman & Hall, London.

    Google Scholar 

  • Roitberg, B.D., Sircom, J., Roitberg, C.A., van Alphen, J.J.M. and Mangel, M. (1993) Life expectancy and reproduction. Nature 364, 108.

    Article  PubMed  CAS  Google Scholar 

  • Rosenheim, J.A. (1996) An evolutionary argument for egg limitation. Evolution 50, 2089–2094.

    Article  Google Scholar 

  • Rosenheim, J.A. (1998) Higher-order predators and the regulation of insect herbivore populations. Annu. Rev. Entomol. 43, 421–447.

    Article  PubMed  CAS  Google Scholar 

  • Rosenheim, J.A. (1999) The relative contributions of time and eggs to the cost of reproduction. Evolution 53, 376–385.

    Article  Google Scholar 

  • Rosenheim, J.A. and Rosen, D. (1991) Foraging and oviposition decisions in the parasitoid Aphytis lingnanensis: distinguishing the influences of egg load and experience. J. Anim. Ecol. 60, 873–893.

    Article  Google Scholar 

  • Sevenster, J.G., Ellers, J. and Driessen, G. (1998) An evolutionary argument for time limitation. Evolution 52, 1241–1244.

    Article  Google Scholar 

  • Shirota, Y., Carter, N., Rabbinge, R. and Ankersmit, G.W. (1983) Biology of Aphidius rhopalosiphi, a parasitoid of cereal aphids. Entomol. Exp. & Appl. 34, 27–34.

    Article  Google Scholar 

  • Skinner, S.W. (1985) Clutch size as an optimal foraging problem for insects. Behav. Ecol. Sociobiol. 17, 231–238.

    Article  Google Scholar 

  • Tatar, M. (1991) Clutch size in the swallowtail butterfly, Battus philenor: the role of host quality and egg load within and among seasonal flights in California. Behav. Ecol. Sociobiol. 28, 337–344.

    Article  Google Scholar 

  • Trjapitzin, S.V. and Strong, D.R. (1995) A new Anagrus (Hymenoptera: Mymaridae), egg parasitoid of Prokelisia spp. (Homoptera: Delphacidae). Pan-Pacific Entomol. 71, 199–203.

    Google Scholar 

  • Turlings, T.C.J., van Batenburg, F.D.H. and van Strien-van Liempt, W.T.F.H. (1985) Why is there no interspecific host discrimination in the two coexisting larval parasitoids of Drosophila species; Leptopilina heterotoma (Thomson) and Asobara tabida (Nees). Oecologia 67, 352–359.

    Article  Google Scholar 

  • Van Randen, E.J. and Roitberg, B.D. (1996) The effect of egg load on superparasitism by the snowberry fly. Entomol. Exp. Appl. 79, 241–245.

    Article  Google Scholar 

  • Vaupel, J.W., Carey, J.R., Christensen, K., Johnson, T.E., Yashin, A.I., Holm, N.V., Iachine, I.A., Kannisto, V., Khazaeli, A.A., Liedo, P., Longo, V.D., Zeng, Y., Manton, K.G. and Curtsinger, J.W. (1998) Biodemographic trajectories of longevity. Science 280, 855–860.

    Article  PubMed  CAS  Google Scholar 

  • Ward, S.A. (1987) Optimal habitat selection in time-limited dispersers. Am. Nat. 129, 568–579.

    Article  Google Scholar 

  • Weis, A.E., Price, P.W. and Lynch, M. (1983) Selective pressures on clutch size in the gall maker Asteromyia carbonifera. Ecology 64, 688–695.

    Article  Google Scholar 

  • Weisser, W.W., Völkl, W. and Hassell, M.P. (1997) The importance of adverse weather conditions for behaviour and population ecology of an aphid parasitoid. J. Anim. Ecol. 66, 386–400.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenheim, J.A. Characterizing the cost of oviposition in insects: a dynamic model. Evolutionary Ecology 13, 141–165 (1999). https://doi.org/10.1023/A:1006612519265

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006612519265

Navigation