Skip to main content
Log in

High-Velocity Laminar and Turbulent Flow in Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We model high-velocity flow in porous media with the multiple scale homogenization technique and basic fluid mechanics. Momentum and mechanical energy theorems are derived. In idealized porous media inviscid irrotational flow in the pores and wall boundary layers give a pressure loss with a power of 3/2 in average velocity. This model has support from flow in simple model media. In complex media the flow separates from the solid surface. Pressure loss effects of flow separation, wall and free shear layers, pressure drag, flow tube velocity and developing flow are discussed by using phenomenological arguments. We propose that the square pressure loss in the laminar Forchheimer equation is caused by development of strong localized dissipation zones around flow separation, that is, in the viscous boundary layer in triple decks. For turbulent flow, the resulting pressure loss due to average dissipation is a power 2 term in velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auriault, J.-L., Borne, L. and Chambon, R.: 1985 Dynamics of porous saturated media, checking of the generalized law of Darcy, J. Acoust. Soc. Am. 77(5), 1641–1650.

    Google Scholar 

  • Barrère, J.: 1990, Modélisation des écoulements de Stokes et Navier–Stokes en milieu poreux. Doctoral thesis at Université de Bordeaux I.

  • Batchelor, G. K.: 1956a, On steady laminar flow with closed streamlines at large Reynolds number, J. Fluid Mech. 1, 177–190.

    Google Scholar 

  • Batchelor, G. K.: 1956b,Aproposal concerning laminarwakes behind bluff bodies at large Reynolds number, J. Fluid Mech. 1, 388–398.

    Google Scholar 

  • Chauveteau, G. and Thirriot, C.: 1965, Sur les pertes de charge en écoulement laminaire dans quelques géométries simple et dans le milieu poreux, IX Convegno di idraulica e costruzioni idrauliche, Trieste, p. III A 3.

  • Chauveteau, G. and Thirriot, C.: 1967, Régimes d'écoulement en milieu poreux et limite de la loi de Darcy, La Houille Blanche (2), 141–148.

    Google Scholar 

  • Du Plessis, J. P.: 1994, Analytical quantification of coefficients in the Ergun equation for fluid friction in a packed bed, Transport in Porous Media 16, 189–207.

    Google Scholar 

  • Du Plessis, J. P. and Masliyah, J. B.: 1988, Mathematical modelling of flow through consolidated isotropic porous media, Transport in Porous Media 3, 145–161.

    Google Scholar 

  • Fand, R. M., Kim, B. Y. K., Lam, A. C. C. and Phan, R. T.: 1987, Resistance to the flow of fluids through simple and complex porous media whose matrices are composed of randomly packed spheres, J. Engng. Fluids 109, 268–274.

    Google Scholar 

  • Firdaouss, M. and Guermond, J.: 1995, Sur l'homogénéisation des équations de Navier–Stokes à faible nombre de Reynolds, C.R. Acad. Sci. Paris Série I 320, 245–251.

    Google Scholar 

  • Hayes, R. E., Afacan, A. and Boulanger, B.: 1995, An equation of motion for an incompressible Newtonian fluid in a packed bed, Transport in Porous Media 18, 185–198.

    Google Scholar 

  • Landau, L. and Lifchitz, E.: 1987, Fluid Mechanics, Pergamon Press, Oxford.

    Google Scholar 

  • Mei, C. C. and Auriault, J.-L.: 1991, The effect of weak inertia on flow through a porous medium, J. Fluid Mech. 222, 647–663.

    Google Scholar 

  • Meyer, R. E.: 1983, A view of the triple deck, SIAM J. Appl. Math. 43(4), 639–663.

    Google Scholar 

  • Muskat, M.: 1937, The Flow of Homogeneous Fluids Through Porous Media, International Human Resources Development Corporation, Reprint, 1982.

  • Rasoloarijaona, M.: 1993, Non linéarités de la loi de darcy: étude théorique, numérique et expérimentale. Thesis report, Laboratoire Sols, Solides, Structures, Universite Joseph Fourier, Grenoble.

  • Rasoloarijaona, M. and Auriault, J.-L.: 1994, Nonlinear seepage flow through a rigid porous medium, Eur. J. Mech. B/Fluids 13(2), 177–195.

    Google Scholar 

  • Ruth, D. and Ma, H.: 1992, On the derivation of the Forchheimer equation by means of the averaging theorem, Transport in Porous Media 7, 255–264.

    Google Scholar 

  • Sanchez-Palencia, E.: 1980, Non Homogeneous Media and Vibration Theory, Lecture notes in Physics, Vol. 127, Springer.

  • Skjetne, E.: 1995, High-velocity flow in porous media; analytical, numerical and experimental studies. Doctoral Thesis at Department of Petroleum Engineeering and Applied Geophysics, Faculty of Applied Earth Sciences and Metallurgy, Norwegian University of Science and Technology.

  • Skjetne, E. and Auriault, J.-L.: 1997, New insights on steady, non-linear flow in porous media, Eur. J. Mech. B/Fluids (submitted).

  • Smith, F.: 1979, Laminar flow of an incompressible fluid past a bluff body: the separation, reattachment, eddy properties and drag, J. Fluid Mech. 92, 171–205.

    Google Scholar 

  • Smith, F. T.: 1986, Steady and unsteady boundary-layer separation, Ann. Rev. Fluid Mech. 18, 197–220.

    Google Scholar 

  • Smith, F. T. and Duck, P.W.: 1980, On the severe non-symmetric constriction, curving or cornering of channel flows, J. Fluid Mech. 90, 727–753.

    Google Scholar 

  • Stewartson, K.: 1981, D'Alembert's paradox, SIAM Rev. 23(3), 308–343.

    Google Scholar 

  • Sychev, V. V.: 1972, Laminar separation, Fluid Dynamics 7, 407–417. Translated from Izv. Akad. Nauk SSSR, Mekh. Zhidk. i Gaza, No. 3, pp. 47–59, May–June, 1972.

    Google Scholar 

  • Sychev, V. V.: 1996, Interaction and separation in internal flows with low skin friction, Fluid Dynamics 31(5), 707–717.

    Google Scholar 

  • Whitaker, S.: 1996, The Forchheimer equation: A theoretical development, Transport in Porous Media 25, 27–61.

    Google Scholar 

  • Wodie, J.-C.: 1992, Contribution à l'étude des milieux poreux par laméthode de l'homogénéisation: filtration non-linéaire, milieux fissurés, Thesis report, Universite Pierre et Marie Curie, Paris.

    Google Scholar 

  • Wodie, J.-C. and Levy, T.: 1991, Correction non linéaire de la loi de Darcy, C.R. Acad. Sci. Paris Série II 312, 157–161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skjetne, E., Auriault, JL. High-Velocity Laminar and Turbulent Flow in Porous Media. Transport in Porous Media 36, 131–147 (1999). https://doi.org/10.1023/A:1006582211517

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006582211517

Navigation