Skip to main content

A Note on the Existence for a Model of Turbulent Flows Through Porous Media

  • Conference paper
  • First Online:
Differential and Difference Equations with Applications (ICDDEA 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 230))

  • 915 Accesses

Abstract

In this work, turbulent flows through porous media are considered. We begin by making a historical review of the equations governing laminar flows in porous media, from Darcy’s law to Darcy–Brinkman–Forchheimer’s more general model. Using the double averaging concept (in time and in space) we explain how to obtain the more general system of equations that governs turbulent flows through porous media. For the one-equation turbulent problem in the steady-state we show that the known existence results can be generalized to any space dimension \(d\ge 2\) and for a more general function of turbulence production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Darcy, H.P.C.: Les Fontaines Publiques de la Ville de Dijon. Victor Dalmont, Paris (1856)

    Google Scholar 

  2. Hazen, A.: Some physical properties of sand and gravels with special reference to their use in filtration, p. 541. Twenty-fourth Annual Report, Massachusetts State Board of Health (1893)

    Google Scholar 

  3. Brinkman, H.C.: A calculation of viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 27–34 (1947)

    MATH  Google Scholar 

  4. Dupuit, J.: Etudes théoriques et pratiques sur le mouvement des eaux dans les canaux découverts et à travers les terrains perméables, 2nd edn. Dunod, Paris (1863)

    Google Scholar 

  5. Forchheimer, P.: Über die Ergiebigkeit von Brunnen-Anlagen und Sickerschlitzen, Z. Architekt. Ing.-Ver. Hannover 32, 539–563 (1886)

    Google Scholar 

  6. Joseph, D.D., Nield, D.A., Papanicolaou, G.: Nonlinear equation governing ow in a saturated porous medium. Water Resources Research 18, 1049–1052 (1982); 19: 591

    Article  Google Scholar 

  7. Nakayama, A.: Non-Darcy Couette flow in a porous medium filled with an inelastic non-Newtonian fluid. Trans. ASME J. Fluids Eng. 114, 642–647 (1992)

    Article  Google Scholar 

  8. Kuznetsov, A.V.: Analytical investigation of heat transfer in Couette flow through a porous medium utilizing the Brinkman-Forchheimer-extended Darcy model. Acta Mechanica 129, 13–24 (1998)

    Article  Google Scholar 

  9. Hsu, C.T., Cheng, P.: Thermal dispersion in a porous medium. Int. J. Heat Mass Transf. 33, 1587–1597 (1990)

    Article  Google Scholar 

  10. Dybbs, A., Edwards, R.V.: A new look at porous media fluid Mechanics - Darcy to turbulent. In: Bear, J., Corapcioglu, M.Y. (eds.) Fundamentals of Transport Phenomena in Porous Media, pp. 199–254. Martinus Nijhof, Boston (1984)

    Chapter  Google Scholar 

  11. Vafai, K., Kim, S.: Fluid mechanics of the interface region between a porous medium and a fluid layer - an exact solution. Int. J. Heat Fluid Flow 11, 254–256 (1990)

    Article  Google Scholar 

  12. Chacón-Rebollo, T., Lewandowski, R.: Mathematical and Numerical Foundations of Turbulence Models and Applications. Springer, New York (2014)

    Book  Google Scholar 

  13. de Lemos, M.J.S.: Turbulence in Porous Media, 2nd edn, p. 2012. Elsevier, Waltham (2012)

    Google Scholar 

  14. de Oliveira, H.B., Paiva, A.: On a one equation turbulent model with feedbacks. In: Pinelas, S., et al. (eds.) Differential and difference equations with applications, vol. 164, pp. 51–61. Springer Proceedings in Mathematics and Statistics (2016)

    Google Scholar 

  15. Getachewa, D., Minkowycz, W.J., Lage, J.L.: A modified form of the \(k-\)epsilon model for turbulent flow of an incompressible fluid in porous media. Int. J. Heat Mass Transf. 43, 2909–2915 (2000)

    Article  Google Scholar 

  16. Antohe, B.V., Lage, J.L.: A general two-equation macroscopic turbulence model for incompressible flow in porous media. Int. J. Heat Mass Transf. 40, 3013–3024 (1997)

    Article  Google Scholar 

  17. Nakayama, A., Kuwahara, F.: A macroscopic turbulence model for flow in a porous medium. ASME J. Fluids Eng. 121, 427–433 (1999)

    Article  Google Scholar 

  18. Pedras, M.H.J.: On the definition of turbulent kinetic energy for flow in porous media. Int. Commun. Heat Mass Transf. 27(2), 211–220 (2000)

    Article  Google Scholar 

  19. de Oliveira, H.B., Paiva, A.: A stationary one-equation turbulent model with applications in porous media. J. Math. Fluid Mech. (2017). Online First: 12 May 2017

    Google Scholar 

  20. de Oliveira, H.B., Paiva, A.: Existence for a one-equation turbulent model with strong nonlinearities. J. Elliptic Parabol. Equ. 3(1–2), 65–91 (2017)

    Article  MathSciNet  Google Scholar 

  21. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-state problems, p. 2011. Springer, New York (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermenegildo Borges de Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borges de Oliveira, H. (2018). A Note on the Existence for a Model of Turbulent Flows Through Porous Media. In: Pinelas, S., Caraballo, T., Kloeden, P., Graef, J. (eds) Differential and Difference Equations with Applications. ICDDEA 2017. Springer Proceedings in Mathematics & Statistics, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-319-75647-9_3

Download citation

Publish with us

Policies and ethics