Skip to main content
Log in

Contrasting variation within and covariation between gender-related traits in autogamous versus outcrossing species: Alternative evolutionary predictions

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

We present several predictions concerning the expression of genetic variation in, and covariation among, gender-related traits in perfect-flowered plant taxa with different breeding systems. We start with the inference that the pollen:ovule (P/O) ratio in obligately autogamous species (in which the ovules in a flower are fertilized only by the pollen it produces) should be under much stronger stabilizing selection than in outcrossing taxa. Consequently, we predict that obligately autogamous taxa should exhibit lower genetic coefficients of variation in the P/O ratio. Nevertheless, genetic variation in both pollen and ovule production per flower might persist within autogamous as well as outcrossing populations. In autogamous taxa, genotypes with relatively few pollen grains and ovules per flower (but producing relatively high numbers of flowers) and genotypes with comparatively high numbers of gametes per flower (but producing relatively few flowers) could co-exist if lifetime flower production is selectively neutral. In contrast, in outcrossers, the maintenance of genetic variation in ovule and pollen production per flower might result predominantly from their ability to maintain variation in phenotypic and functional gender. Given genetic variation in primary sexual traits, we predict that the genetic correlation between investment in male and female gametes per flower should qualitatively differ between selfers and outcrossers. We predict a positive genetic correlation between pollen and ovule production per flower in obligately autogamous taxa, primarily because strong stabilizing selection on the P/O ratio should select against the gender specialists that would be necessary to effect a negative genetic correlation between mean pollen and ovule production per flower. Moreover, the fact that autogamous individuals are 50% female and 50% male means that gender-biased phenotypes cannot be functionally gender-biased, preventing selection from favouring phenotypic extremes. In contrast, in outcrossing taxa, in which functionally male- and female-biased genotypes may co-exist, the maintenance of contrasting genders could contribute to the expression of negative genetic correlations between pollen and ovule production per flower. We discuss these and a number of corollary predictions, and we provide a preliminary empirical test of the first prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ågren, J. (1987) Intersexual differences in phenology and damage by herbivores and pathogens in dioecious Rubus chamaemorus L. Oecologia 72, 161–169.

    Article  Google Scholar 

  • Ågren, J. and Schemske, D.W. (1995) Sex allocation in the monoecious herb Begonia semiovata. Evolution 49, 121–130.

    Article  Google Scholar 

  • Ågren, J. and Willson, M.F. (1991) Gender variation and sexual differences in reproductive characters and seed production in gynodioecious Geranium maculatum. Am. J. Bot. 78, 470–480.

    Article  Google Scholar 

  • Armbruster, W.S. (1991) Multilevel analysis of morphometric data from natural plant populations: Insights into ontogenetic, genetic, and selective correlations in Dalechampia scandens. Evolution 45, 1229–1244.

    Article  Google Scholar 

  • Ashman, T.L. (1992) Indirect costs of seed production within and between seasons in a gynodioecious species. Oecologia 92, 266–272.

    Article  Google Scholar 

  • Ashman, T.L. (1994) Reproductive allocation in hermaphroditic and female plants of Sidalcea oregana ssp. spicata (Malvaceae) using four currencies. Am. J. Bot. 81, 433–438.

    Article  Google Scholar 

  • Assouad, M.W., Dommée, B., Lumaret, R. and Valdeyron, G. (1978) Reproductive capacities in the sexual forms of the gynodioecious species Thymus vulgaris L. Bot. J. Linn. Soc. 77, 29–39.

    Google Scholar 

  • Atlan, A., Gouyon, P.-H., Fournial, T., Pomente, D. and Couvet, D. (1992) Sex allocation in an hermaph-roditic plant: The case of gynodioecy in Thymus vulgaris L. J. Evol. Biol. 5, 189–203.

    Article  Google Scholar 

  • Bell, G. (1985) On the function of flowers. Proc. R. Soc. Lond. B, Biol. Sci. 224, 223–265.

    Article  Google Scholar 

  • Bell, G. and Koufopanou, V. (1986) The cost of reproduction. Oxford Surv. Evol. Biol. 3, 83–131.

    Google Scholar 

  • Boecklen, W.J., Price, P.W. and Mopper, S. (1990) Sex and drugs and herbivores: Sex-based herbivory in arroyo willow (Salix lasiolepis). Ecology 71, 581–588.

    Article  CAS  Google Scholar 

  • Bradshaw, A.D. (1965) Evolutionary significance of phenotypic plasticity in plants. Adv. Gen. 13, 115–155.

    Google Scholar 

  • Brunet, J. and Charlesworth, D. (1995) Floral sex allocation in sequentially blooming plants. Evolution 49, 70–79.

    Article  Google Scholar 

  • Burd, M. (1995) Ovule packaging in stochastic pollination and fertilization environments. Evolution 49, 100–109.

    Article  Google Scholar 

  • Carr, D.E. and Fenster, C.B. (1994) Levels of genetic variation and covariation for Mimulus (Scrophular-iaceae) floral traits. Heredity 72, 606–618.

    Google Scholar 

  • Charlesworth, B. (1990) Optimization models, quantitative genetics, and mutation. Evolution 44, 520–538.

    Article  Google Scholar 

  • Charlesworth, B. and Charlesworth, D. (1978) A model for the evolution of dioecy and gynodioecy. Am. Nat. 112, 975–997.

    Article  Google Scholar 

  • Charlesworth, D. (1989) Evolution of low female fertility in plants: Pollen limitation, resource allocation and genetic load. Trends Ecol. Evol. 4, 289–292.

    Article  Google Scholar 

  • Charlesworth, D. and Charlesworth, B. (1981) Allocation of resources to male and female function in herm-aphrodites. Biol. J. Linn. Soc. 15, 57–74.

    Google Scholar 

  • Charlesworth, D. and Charlesworth, B. (1995) Quantitative genetics in plants: The effect of the breeding system on genetic variability. Evolution 49, 911–920.

    Article  Google Scholar 

  • Charlesworth, D. and Morgan, M.T. (1991) Allocation of resources to sex functions in flowering plants. Phil Trans. R. Soc. Lond. B. 332, 91–102.

    Google Scholar 

  • Charnov, E.L. (1979) Simultaneous hermaphroditism and sexual selection. Proc. Natl. Acad. Sci. 76, 2480–2484.

    Article  PubMed  Google Scholar 

  • Charnov, E.L. (1982) The Theory of Sex Allocation. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Charnov, E.L. (1989) Phenotypic evolution under Fisher's fundamental theorem of natural selection. Heredity 62, 113–116.

    PubMed  Google Scholar 

  • Cheverud, J.M. (1984) Quantitative genetics and developmental constraints on evolution by selection. J. Theor. Biol. 110, 155–171.

    PubMed  CAS  Google Scholar 

  • Clark, A.G. (1987) Genetic correlations: The quantitative genetics of evolutionary constraints. In Genetic Constraints on Adaptive Evolution (V. Loeschcke, ed.), pp. 15–45. Springer-Verlag, Berlin.

    Google Scholar 

  • Clement, C., Burrus, M. and Audran, J.-C. (1996) Floral organ growth and carbohydrate content during pollen development in Lilium. Am. J. Bot. 83, 459–469.

    Article  CAS  Google Scholar 

  • Conner, J. and Via, S. (1993) Patterns of phenotypic and genetic correlations among morphological and life-history traits in wild radish, Raphanus raphanistrum. Evolution 47, 704–711.

    Article  Google Scholar 

  • Couvet, D., Atlan, A., Belhassen, E., Gliddon, C., Gouyon, P.-H. and Kjellberg, F. (1990) Coevolution between two symbionts: The case of cytoplasmic male-sterility in higher plants. Oxford Surv. Evol. Biol. 6, 225–249.

    Google Scholar 

  • Cox, P.A. (1988) Monomorphic and dimorphic sexual strategies: A modular approach. In Plant Reproductive Ecology: Patterns and Strategies (J. Lovett Doust and L. Lovett Doust, eds), pp. 80–97. Oxford Uni-versity Press, Oxford.

    Google Scholar 

  • Cruden, R.W. (1976) Intraspecific variation in pollen-ovule ratios and nectar secretion-preliminary evidence of ecotypic adaptation. Ann. Missouri Bot. Gard. 63, 277–289.

    Article  Google Scholar 

  • Cruden, R.W. (1977) Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution 31, 32–46.

    Article  Google Scholar 

  • Cruden, R.W. and Lyon, D.L. (1985a) Correlations among stigma depth, style length, and pollen grain size: Do they reflect function or phylogeny? Bot. Gaz. 146, 143–149.

    Article  Google Scholar 

  • Cruden, R.W. and Lyon, D.L. (1985b) Patterns of biomass allocation to male and female functions in plants with different mating systems. Oecologia 66, 299–306.

    Google Scholar 

  • Curtsinger, J.W., Service, P.M. and Prout, T. (1994) Antagonistic pleiotropy, reversal of dominance, and genetic polymorphism. Am. Nat. 144, 210–288.

    Article  Google Scholar 

  • Damgaard, C. and Loeschcke, V. (1994) Genotypic variation for reproductive characters, and the influence of pollen-ovule ratio on selfing rate in rape seed (Brassica napus). J. Evol. Biol. 7, 599–607.

    Article  Google Scholar 

  • Darwin, C. (1877) The Different Forms of Flowers on Plants of the Same Species. John Murray, London.

  • de Jong, G. (1993) Covariances between traits deriving from successive allocations of a resource. Funct. Ecol. 7, 75–83.

    Article  Google Scholar 

  • de Laguerie, P., Olivieri, I., Atlan, A. and Gouyon, P.-H. (1991) Analytic and simulation models predicting positive genetic correlations between traits linked by trade-offs. Evol. Ecol. 5, 361–369.

    Article  Google Scholar 

  • Delph, L.F. (1986) Factors regulating fruit and seed production in the desert annual Lesquerella gordonii. Oecologia 69, 471–476.

    Article  Google Scholar 

  • Delph, L.F. (1990) Sex-differential resource allocation patterns in the subdioecious shrub Hebe subalpina. Ecology 71, 1342–1351.

    Article  Google Scholar 

  • Delph, L.F., Galloway, L.F. and Stanton, M.L. (1996) Sexual dimorphism in flower size. Am. Nat. 148, 299–320.

    Article  Google Scholar 

  • Devlin, B. (1989) Components of seed and pollen yield of Lobelia cardinalis: Variation and correlations. Am. J. Bot. 76, 204–214.

    Article  Google Scholar 

  • Devlin, B. and Ellstrand, N.C. (1990) Male and female fertility variation in wild radish, a hermaphrodite. Am. Nat. 136, 87–107.

    Article  Google Scholar 

  • Devlin, B. and Stephenson, A.G. (1987) Sexual variations among plants of a perfect-flowered species. Am. Nat. 130, 199–218.

    Article  Google Scholar 

  • Eckhart, V.M. (1992a) Resource compensation and the evolution of gynodioecy in Phacelia linearis (Hy-drophyllaceae). Evolution 46, 1313–1328.

    Article  Google Scholar 

  • Eckhart, V.M. (1992b) The genetics of gender and the effects of gender on floral characters in gynodioecious Phacelia linearis (Hydrophyllaceae). Am. J. Bot. 79, 792–800.

    Article  Google Scholar 

  • Falconer, D.S. (1989) Introduction to Quantitative Genetics, 3rd edn. Longman Scientific and Technical, Essex.

    Google Scholar 

  • Garnier, P., Maurice, S. and Olivieri, I. (1993) Costly pollen in maize. Evolution 47, 946–949.

    Article  Google Scholar 

  • Goldmann, D.A. and Willson, M.F. (1986) Sex allocation in functionally hermaphroditic plants: A review and critique. Bot. Rev. 52, 157–193.

    Google Scholar 

  • Guerrant, E.O., Jr. (1989) Early maturity, small flowers, and autogamy: A developmental connection? In The Evolutionary Ecology of Plants (J. Bock and Y.B. Linhart, eds), pp. 61–84. Westview Press, Boulder, CO.

    Google Scholar 

  • Hjalten, J. (1992) Plant sex and hare feeding preferences. Oecologia 89, 253–256.

    Google Scholar 

  • Holtsford, T.P. and Ellstrand, N.C. (1992) Genetic and environmental variation in floral traits affecting outcrossing rate in Clarkia tembloriensis (Onagraceae). Evolution 46, 216–225.

    Article  Google Scholar 

  • Horovitz, A. (1978) Is the hermaphrodite flowering plant equisexual? Am. J. Bot. 65, 485–486.

    Article  Google Scholar 

  • Houle, D. (1991) Genetic covariance and fitness correlates: What genetic correlations are made of and why it matters. Evolution 45, 630–648.

    Article  Google Scholar 

  • Houle, D. (1992) Comparing evolvability and variability of quantitative traits. Genetics 130, 194–204.

    Google Scholar 

  • Jolls, C.L. and Chenier, T.C. (1989) Gynodioecy in Silene vulgaris (Caryophyllaceae): Progeny success, ex-perimental design, and maternal effects. Am. J. Bot. 76, 1360–1367.

    Article  Google Scholar 

  • Kohn, J.C. (1989) Sex ratio, seed production, biomass allocation, and the cost of male function in Cucurbita foetidissima. Evolution 43, 1424–1434.

    Article  Google Scholar 

  • Krischik, V.A. and Denno, R.F. (1990) Patterns of growth, reproduction, defense, and herbivory in the dioecious shrub Baccharis halimifolia (Compositae). Oecology 83, 182–190.

    Article  Google Scholar 

  • Lande, R. (1982) A quantitative genetic theory of life history evolution. Ecology 63, 607–615.

    Article  Google Scholar 

  • Lande, R. and Arnold, S.J. (1983) The measurement of selection on correlated characters. Evolution 37, 1210–1226.

    Article  Google Scholar 

  • Lively, C.M. and Johnson, S.G. (1994) Brooding and the evolution of parthenogenesis: Strategy models and evidence from aquatic invertebrates. Proc. R. Soc. Lond. B. 256, 89–95.

    CAS  Google Scholar 

  • Lloyd, D.G. (1965) Evolution of self-compatibility and racial differentiation in Leavenworthia (Cruciferae). Contrib. Gray Herbarium Harvard Univ. 195, 3–134.

    Google Scholar 

  • Lloyd, D.G. (1980) Sexual strategies in plants III. A quantitative method for describing the gender of plants. NZ J. Bot. 18, 103–108.

    Google Scholar 

  • Lloyd, D.G. (1984) Gender allocations in outcrossing cosexual plants. In Perspectives on Plant Population Ecology (R. Dirzo and J. Sarukhán, eds), pp. 277–300. Sinauer Associates, Sunderland, MA.

  • Lloyd, D.G. (1987a) Selection of offspring size at independence and other size-versus-number strategies. Am. Nat. 129, 800–817

    Article  Google Scholar 

  • Lloyd, D.G. (1987b) Allocations to pollen, seeds and pollination mechanisms in self-fertilizing plants. Funct. Ecol. 1, 83–89.

    Article  Google Scholar 

  • Lloyd, D.G. and Bawa, K.S. (1984) Modifications of the gender of seed plants in varying conditions. Evol. Biol. 17, 255–338.

    Google Scholar 

  • Longo, G.P.M., Rossi, G., Scaglione, G., Longo, C.P. and Soave, C. (1990) Sexual differentiation in Asparagus officianalis L. 3. Hormone content and peroxidase isoenzymes in female and male plants. Sex. Plant Repro. 3, 236–243.

    Google Scholar 

  • Lord, E.M. (1981) Cleistogamy: A tool for the study of floral morphogenesis, function and evolution. Bot. Rev. 47, 421–449.

    Google Scholar 

  • Maki, M. (1993) Outcrossing and fecundity advantage of females in gynodioecious Chionographis japonica var. kurohimensis (Liliaceae). Am. J. Bot. 80, 629–634.

    Article  Google Scholar 

  • Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campell, J., Goodwin, B., Lande, R., Raup, D. and Wolpert, L. (1985) Developmental constraints and evolution. Q. Rev. Biol. 60, 265–287.

    Article  Google Scholar 

  • Mazer, S.J. (1989) Family mean correlations among fitness components in wild radish: Controlling for ma-ternal effects on seed weight. Can. J. Bot. 67, 1890–1897.

    Article  Google Scholar 

  • Mazer, S.J. and Hultgard, U. (1993) Variation in gender allocation and covariation among floral characters within and among four species of northern European Primula. Am. J. Bot. 80, 474–485.

    Article  Google Scholar 

  • Mazer, S.J. and Schick, C.T. (1991) Constancy of population parameters for life-history and floral traits in Raphanus sativus L. II. E.ects of planting density on phenotype and heritability estimates. Evolution 45, 1888–1907.

    Article  Google Scholar 

  • Mazer, S.J., Nakamura, R.R. and Stanton, M.L. (1989) Seasonal changes in components of male and female reproductive success in Raphanus sativus L. (Brassicaceae). Oecologia 81, 345–353.

    Google Scholar 

  • McKone, M.J. (1987) Sex allocation and outcrossing rate: A test of theoretical predictions using bromegrasses (Bromus). Evolution 41, 591–598.

    Article  Google Scholar 

  • Mitchell-Olds, T. and Rutledge, J.J. (1986) Quantitative genetics in natural plant populations: A review of the theory. Am. Nat. 127, 279–402.

    Article  Google Scholar 

  • Molinafreaner, F. and Jain, S.K. (1992) Female frequencies and fitness components between sex phenotypes among gynodioecious populations of the colonizing species Trifolium hirtum all in California. Oecologia 92, 279–286.

    Article  Google Scholar 

  • Mossop, R., Macnair, M.R. and Robertson, A.W. (1994) Within-population variation in sexual resource allocation in Mimulus guttatus. Funct. Ecol. 8, 410–418.

    Article  Google Scholar 

  • Muenchow, G. and Delesalle, V.A. (1992) Patterns of weevil herbivory on male, monoecious and female inflorescences of Sagittaria latifolia. Am. Mid. Nat. 127, 355–367.

    Article  Google Scholar 

  • O'Neil, P. and Schmitt, J. (1993) Genetic constraints on the independent evolution of male and female reproductive characters in the tristylous plant Lythrum salicaria. Evolution 47, 1457–1471.

    Google Scholar 

  • Orndu., R. (1969) Reproductive biology in relation to systematics. Taxon 18, 121–133.

    Article  Google Scholar 

  • Pease, C.M. and Bull, J.J. (1988) A critique of methods for measuring life history trade-offs. J. Evol. Biol. 1, 293–303.

    Article  Google Scholar 

  • Pettersson, M.W. (1992) Advantages of being a specialist female in the gynodioecious Silene vulgaris S.L. (Caryophyllaceae). Am. J. Bot. 79, 1389–1395.

    Article  Google Scholar 

  • Philbrick, C.T. and Anderson, G.J. (1987) Implication of pollen/ovule ratios and pollen size for the reproductive biology of Potamogeton and autogamy in aquatic angiosperms. Syst. Bot. 12, 98–105.

    Article  Google Scholar 

  • Price, T. and Schluter, D. (1991) On the low heritability of life-history traits. Evolution 45, 853–861.

    Article  Google Scholar 

  • Primack, R.B. (1978) Regulation of seed yield in Plantago. J. Ecol. 66, 835–847.

    Article  Google Scholar 

  • Queller, D.C. (1983) Sexual selection in a hermaphroditic plant. Nature 305, 706–707.

    Article  Google Scholar 

  • Rameau, C. and Gouyon, P.-H. (1991) Resource allocation to growth, reproduction and survival in Gladiolus: The cost of male function. J. Evol. Biol. 4, 291–307.

    Article  Google Scholar 

  • Reznick, D. (1985) Costs of reproduction: An evaluation of the empirical evidence. Oikos 44, 257–267.

    Google Scholar 

  • Ritland, C. and Ritland, K. (1989) Variation of sex allocation among eight taxa of the Mimulus guttatus complex (Scrophulariaceae). Am. J. Bot. 76, 1731–1739.

    Article  Google Scholar 

  • Robbins, L. and Travis, J. (1986) Examining the relationship between functional gender and gender spe-cialization in hermaphroditic plants. Am. Nat. 128, 409–415.

    Article  Google Scholar 

  • Savolainen, O., Karkkainen, K., Harju, A., Nikkanen, T. and Rusanen, M. (1993) Fertility variation in Pinus sylvestris: A test of sex allocation theory. Am. J. Bot. 80, 1016–1020.

    Article  Google Scholar 

  • Schemske, D.W. (1978) Evolution of reproductive characters in Impatiens (Balsaminiaceae): The significance of cleistogamy and chasmogamy. Ecology 58, 596–613.

    Article  Google Scholar 

  • Schoen, D.J. (1982) Male reproductive effort and breeding system in an hermaphroditic plant. Oecologia 53, 255–257.

    Article  Google Scholar 

  • Schoen, D.J. and Dubuc, M. (1990) The evolution of inflorescence size and number: A gamete-packaging strategy in plants. Am. Nat. 135, 841–857.

    Article  Google Scholar 

  • Silvertown, J. (1987) The evolution of hermaphroditism. Oecologia 72, 157–159.

    Article  Google Scholar 

  • Small, E. (1988) Pollen-ovule patterns in tribe Trifolieae (Leguminosae). Pl. Syst. Evol. 160, 195–205.

    Article  Google Scholar 

  • Stanton, M.L. (1994) Male-male competition during pollination in plant populations. Am Nat. 144S, 40–68.

    Article  Google Scholar 

  • Stanton, M.L. and Galloway, L.F. (1990) Natural selection and allocation to reproduction in flowering plants. In Some Mathematical Questions in Biology-Sex Allocation and Sex Change: Experiments and Models (M. Mangel, ed.), pp. 1–50. American Mathematical Association, Providence, RI.

    Google Scholar 

  • Stanton, M.L. and Preston, R.E. (1988) Ecological consequences of floral variation for male and female reproduction in experimental populations of wild radish, Raphanus sativus. Evolution 45, 260–280.

    Google Scholar 

  • Stanton, M. and Young, H.J. (1994) Selecting for floral trait associations in wild radish, Raphanus sativus L. J. Evol. Biol. 7, 271–285.

    Article  Google Scholar 

  • Stanton, M., Young, H.J., Ellstrand, N.C. and Clegg, J.M. (1991) Consequences of floral variation for male and female reproduction in experimental populations of wild radish, Raphanus sativus L. Evolution 45, 268–280.

    Article  Google Scholar 

  • Thomson, J.D. and Barrett, S.C.H. (1981) Temporal variation of gender in Aralia hispida Vent. (Araliaceae). Evolution 35, 1094–1107.

    Article  Google Scholar 

  • Thomson, J.D., McKenna, M.A. and Cruzan, M.B. (1989) Temporal patterns of nectar and pollen production in Aralia hispida: Implications for reproductive success. Ecology 70, 1061–1068.

    Article  Google Scholar 

  • Vonhof, M.J. and Harder, L.D. (1995) Size-number trade-offs and pollen production by Paplionaceous legumes. Am. J. Bot. 82, 230–238.

    Article  Google Scholar 

  • Waser, N.M. (1983) The adaptive nature of floral traits: Ideas and evidence. In Pollination Biology (L. Real, ed.), pp. 242–287. Academic Press, New York.

    Google Scholar 

  • Watson, M.A. (1995) Sexual differences in plant developmental phenology affect plant-herbivore interactions. Trends Ecol. Evol. 10, 180–182.

    Article  Google Scholar 

  • Williams, G.C. (1957) Pleiotropy, natural selection and the evolution of senescence. Evolution 11, 398–411.

    Article  Google Scholar 

  • Willson, M.F. (1991) Sexual selection, sexual dimorphism and plant phylogeny. Evol. Ecol. 5, 69–87.

    Article  Google Scholar 

  • Willson, M.F. and Ruppel, K.P. (1984) Resource allocation and floral sex ratios in Zizania aquatica. Can. J. Bot. 62, 799–805.

    Article  Google Scholar 

  • Wilson, P., Thomson, J.D., Stanton, M.L. and Rigney, L.P. (1994) Beyond floral Batemania: Gender biases in selection for pollination success. Am. Nat. 143, 283–296.

    Article  Google Scholar 

  • Wyatt, R. (1984) Evolution of self-pollination in granite outcrop species of Arenaria (Caryophyllaceae). III. Reproductive effort and pollen-ovule ratios. Syst. Bot. 9, 432–440.

    Article  Google Scholar 

  • Young, H.J. and Stanton, M.L. (1990) Influences of floral variation on pollen removal and seed production in wild radish. Ecology 71, 536–547.

    Article  Google Scholar 

  • Young, H.J., Stanton, M.L., Ellstrand, N.C. and Clegg, J.M. (1994) Temporal and spatial variation in heritability and genetic correlations among floral traits in Raphanus sativus, wild radish. Heredity 73, 298–308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazer, S.J., Delesalle, V.A. Contrasting variation within and covariation between gender-related traits in autogamous versus outcrossing species: Alternative evolutionary predictions. Evolutionary Ecology 12, 403–425 (1998). https://doi.org/10.1023/A:1006568704381

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006568704381

Navigation