Skip to main content
Log in

Contributions to Theoretical/Experimental Developments in Shock Waves Propagation in Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Macroscopic balance equations of mass, momentum and energy for compressible Newtonian fluids within a thermoelastic solid matrix are developed as the theoretical basis for wave motion in multiphase deformable porous media. This leads to the rigorous development of the extended Forchheimer terms accounting for the momentum exchange between the phases through the solid-fluid interfaces. An additional relation presenting the deviation (assumed of a lower order of magnitude) from the macroscopic momentum balance equation, is also presented. Nondimensional investigation of the phases' macroscopic balance equations, yield four evolution periods associated with different dominant balance equations which are obtained following an abrupt change in fluid's pressure and temperature. During the second evolution period, the inertial terms are dominant. As a result the momentum balance equations reduce to nonlinear wave equations. Various analytical solutions of these equations are described for the 1-D case. Comparison with literature and verification with shock tube experiments, serve as validation of the developed theory and the computer code.

A 1-D TVD-based numerical study of shock wave propagation in saturated porous media, is presented. A parametric investigation using the developed computer code is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attenborough, K.: Acoustical characteristics of porous materials, Phys. Reports 82(3) (1982), 179-227.

    Google Scholar 

  2. Bachmat, Y. and Bear, J.: Macroscopic modeling of transport phenomena in porous media: 1. The continuum approach, Transport in Porous Media 1 (1986), 213-240.

    Google Scholar 

  3. Baer, M. R.: Numerical studies of dynamic compaction of inert and energetic granular materials, ASME J. Appl. Mech. 55 (1988), 36-43.

    Google Scholar 

  4. Baer, M. R.: A numerical study of shock wave reflections on low density foam, Shock Waves 2 (1992), 121-124.

    Google Scholar 

  5. Baer, M. R. and Nunziato, J. W.: Atwo-phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials, Int. J. Multiphase Flow 12 (1986), 861-889.

    Google Scholar 

  6. Bear, J. and Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990.

    Google Scholar 

  7. Bear, J. and Sorek, S.: Evolution of governing mass and momentum balance equations following an abrupt pressure impact in a porous medium, Transport in Porous Media 5 (1990), 169-185.

    Google Scholar 

  8. Bear, J., Sorek, S., Ben-Dor,G. and Mazor, G.: Displacementwaves in saturated thermoelastic porous media: I. Basic equations, Fluid Dynam. Res. 9 (1992), 155-164.

    Google Scholar 

  9. Ben-Dor, G.: Shock Wave Reflection Phenomena, Springer-Verlag, New York, 1991.

    Google Scholar 

  10. Ben-Dor, G., Mazor, G., Igra, O., Sorek, S. and Onodera, H.: Shock wave interaction with cellular materials: II. Open cell foams; Experimental and numerical results, ShockWaves 3(3) (1994), 167-179.

    Google Scholar 

  11. Ben-Dor, G. and Zaretsky, E. B.: Head-on interaction of planar shockwaves with polyurethane foams-A semi-empirical model, Archivem Appl. Mech. 64 (1994), 1-8.

    Google Scholar 

  12. Biot, M. A.: Theory of propagation of elastic waves in fluid-saturated porous solid, J. Acoust. Soc. Amer. 28 (1956), 168-191.

    Google Scholar 

  13. Corapcioglu, M. Y.: Wave propagation in porous media-a review, In: J. Bear and M. Y. Corapcioglu (eds), Transport Processes in Porous Media, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991, pp. 373-469.

    Google Scholar 

  14. Degrande, G. and de Roeck, G.: FFT-based spectral analysis methodology for one-dimensional wave propagation in poroelastic media, Transport in Porous Media 9 (1992), 85-97.

    Google Scholar 

  15. Du Plessis, J. P. and Masliyan, J. H.: Mathematical modeling of flow through consolidated isotropic porous media, Transport in Porous Media 3 (1988), 145-164.

    Google Scholar 

  16. Du Plessis, J. P., Montillet, A., Comiti, J. and Legrand, J.: Pressure drop prediction for flow through high porosity metallic foams, Chem. Engg. Sci. 49(21) (1994), 3545-3553.

    Google Scholar 

  17. Gelfand, B. E., Gubanov, A. V. and Timofeev, E. I.: Interaction between shock waves and porous screen, Sov. Phys.-Fluid Mech. 4 (1983), 79-84.

    Google Scholar 

  18. Gibson, L. J. and Ashby M. F.: Cellular Solids-Structure & Properties, Program Press, Headington Hill Hall, Oxford, England, 1988.

    Google Scholar 

  19. Glass, I. I. and Hall, G. J.: Shock Tubes, Handbook of Supersonic Aerodynamics, Sec. 18, Navond Report 1488, Vol. 6, 1959, p. 66.

    Google Scholar 

  20. van der Grinten, J. G. M., Smits, M. A., van der Kogel, H. and van Dongen, M. E. H.: Shock-induced wave propagation in and reflection from porous column partially saturated with water, In: H. Gronig (ed.), Shock Tubes and Waves, VCH Verlagsgesellschaft mbH, Weinheim, Germany, 1988, pp. 357-362.

    Google Scholar 

  21. Gvozdeva, L. G., Faresov, Yu. M. and Fokeev, V. P.: Interaction between air shock wave and porous compressible material, Sov. Phys. Appl. Math. Tech. Phys. 3 (1985), 111-115.

    Google Scholar 

  22. Gvozdeva, L. G. and Faresov, Yu. M.: Approximate calculation of steady state shock wave parameters in porous compressible materials, J. Appl. Mech. Tech. Phys. (English translation of PMTF, Zh. Prik. Mekh. Tekh. Fiz.), 27 (1986), 107-111.

    Google Scholar 

  23. Harten, A.: High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 49 (1983), 357-393.

    Google Scholar 

  24. Henderson, L. F., Virgona, R. J., Di, J. and Gvozdeva, L. G.: Refraction of a normal shock wave from nitrogen into polyurethane foam, In: Y. W. Kim (ed.), Current Topics in Shock Waves, American Institute of Physics, New York, U.S.A., 1990, pp. 814-818.

    Google Scholar 

  25. Hsu, C. T. and Cheng, P.: Thermal dispersion in a porous medium, Int. J. Heat Mass Transfer 33(8) (1990), 1587-1597.

    Google Scholar 

  26. Igra, O. and Ben-Dor, G.: Dusty shock waves, ASME Appl. Mech. Rev. 41 (1988), 379-437.

    Google Scholar 

  27. Krylov, A., Sorek, S., Levy, A. and Ben-Dor, G.: Simple waves in saturated porous media: I. The isothermal case, JSME Int. J. Series B 39(2) (1996), 294-298.

    Google Scholar 

  28. Landau, L. D. and Lifshitz, E. M.: Fluid Mechanics, 2nd edn, Pergamon Press, 1987, pp. 378-385.

  29. Levy, A.: Wave Propagation in a Saturated Porous Media, PhD Thesis, Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel, 1996, (in Hebrew).

    Google Scholar 

  30. Levy, A., Ben-Dor, G., Skews, B. W. and Sorek, S.: Head-on collision of normal shock waves with rigid porous materials, Experiments in Fluids 15 (1993), 183-190.

    Google Scholar 

  31. Levy, A., Ben-Dor, G., Sorek, S. and Bear, J.: Jump conditions across strong compaction waves in gas saturated rigid porous media, Shock Waves 3(2) (1993), 105-111.

    Google Scholar 

  32. Levy, A., Sorek, S., Ben-Dor, G. and Bear, J.: Evolution of the balance equations in saturated thermoelastic porous media following abrupt simultaneous changes in pressure and temperature, Transport in Porous Media 21 (1995), 241-268.

    Google Scholar 

  33. Levy, A., Sorek, S., Ben-Dor, G. and Skews B. W.: Waves propagation in saturated rigid porous media: analytical model and comparison with experimental results, Fluid Dynam. Res. 17 (1996), 49-65.

    Google Scholar 

  34. Levy A., Ben-Dor G., and Sorek, S.: Numerical investigation of the propagation of shock waves in rigid materials: development of the computer code and comparison with experimental results, J. Fluid Mech. 324 (1996), 163-179.

    Google Scholar 

  35. Li, H. and Ben-Dor, G.: Head-on interaction of weak planar shock waves with flexible porous materials-analytical model, Int. J. Multiphase Flow 21(5) (1995), 941-947.

    Google Scholar 

  36. Li, H., Levy, A. and Ben-Dor, G.: Analytical prediction of regular reflection over porous surfaces and comparison with experiments, J. Fluid Mech. 282 (1995), 219-232.

    Google Scholar 

  37. Liepmann, H. W. and Roshko, A.: Elements of Gas Dynamics, Wiley, New York, U.S.A., 1957.

    Google Scholar 

  38. Mazor, G., Ben-Dor, G., Igra, O. and Sorek, S.: Shockwave interaction with cellular materials: Part I. Analytical investigation and governing equations, Shock Waves 3 (1994), 159-165.

    Google Scholar 

  39. Nield, D. A.: The limitations of the Brinkman-Forchheimer equation in modelling flow in a saturated porous medium and at an interface, Int. J. Heat Fluid Flow 12 (1991), 269-272.

    Google Scholar 

  40. Nield, D. A.: Modelling high speed flow of compressible fluid in a saturated porous medium, Transport in Porous Media 14 (1994), 85-88.

    Google Scholar 

  41. Nigmatulin, R. I. and Gubaidullin, A. A.: Linear waves in saturated porous media, Transport in Porous Media 9 (1992), 135-142.

    Google Scholar 

  42. Nikolaevskij, V. M.: Mechanics of Porous and Fractured Media, World Scientific, Singapore, 1990.

    Google Scholar 

  43. Olim, M., van Dongen, M. E. W., Kitamura, T. and Takayama, K.: Numerical simulation of the propagation of shock waves in compressible open-cell porous foams, Int. J. Multiphase Flow 20(3) (1994), 557-568.

    Google Scholar 

  44. Powers, J. M., Stewart, D. S. and Krier, H.: Analysis of steady compaction waves in porous materials, ASME J. Appl. Mech. 56 (1989), 15-24.

    Google Scholar 

  45. Sandusky, H. W. and Liddiard, T. P.: Dynamic Compaction of Porous Beds, NSWCTR 83-256, NAVAL Surface Weapons Center, White Oak, Md., U.S.A., 1985.

    Google Scholar 

  46. Skews, B. W.: The reflected pressure field in the interaction of weak shock waves with a compressible porous foams, Shock Waves 1 (1991), 205-211.

    Google Scholar 

  47. Skews, B. W., Atkins, M. D. and Seitz, M. W.: The impact of shock wave on porous compressible foams, J. Fluid Mech. 253 (1993), 245-265.

    Google Scholar 

  48. Smeulders, D. M. J., de La Rosette, S. P. M. and Van Dongen, M. E. H.: Waves in partially saturated porous media, Transport in Porous Media 9 (1992), 25-37.

    Google Scholar 

  49. Sorek, S., Bear, J., Ben-Dor, G. and Mazor, G.: Shock waves in saturated thermoelastic porous media, Transport in Porous Media 9 (1992), 3-13.

    Google Scholar 

  50. Sorek, S., and Levi-Hevroni, D.: A model for solute transport following an abrupt pressure impact in nondeformable porous media, 2nd Inter. Conf. on Water Pollution Milan 1993, pp. 77-84.

  51. Sorek, S., Krylov, A., Levy, A. and Ben-Dor, G.: Simple waves in saturated porous media: II. The nonisothermal case, JSME Int. J. Series B 39(2) (1996), 299-304.

    Google Scholar 

  52. Sorek, S.: A model for solute transport following an abrupt pressure impact in saturated porous media, Transport in Porous Media 22 (1996), 271-285.

    Google Scholar 

  53. Zaretsky, E. B. and Igra, O.: Head-on collision of a normal shock wave with a polyester foam, The 19th Int. Symp. Shock Waves, Marseille, France, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorek, S., Levy, A., Ben-dor, G. et al. Contributions to Theoretical/Experimental Developments in Shock Waves Propagation in Porous Media. Transport in Porous Media 34, 63–100 (1999). https://doi.org/10.1023/A:1006553206369

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006553206369

Navigation