Skip to main content
Log in

Effects of parental survival on clutch size decisions in fluctuating environments

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Whereas in constant environments parental survival has no effect on optimal clutch size in the absence of trade-offs between juvenile and parental survival, the situation is drastically different in fluctuating environments. We consider a model in which, with respect to reproduction, parents and offspring are equivalent at the start of the next breeding season. When generations are non-overlapping, the clutch size maximizing geometric mean surviving number of offspring is optimal among all pure clutch size strategies. We prove that, as parental survival increases relative to that of the offspring, the optimal clutch size converges to the arithmetic mean maximizing clutch size (the so-called ‘Lack clutch size’). We also give a numerical procedure for calculating optimal mixed strategies and we show that, as environmental variance increases and/or parental survival decreases, mixed rather than pure strategies become optimal. Furthermore, we explain how to estimate fitness from empirical data under the assumptions of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boyce, M.S. and Perrins, C.M. (1987) Optimizing great tit clutch size in a fluctuating environment. Ecology 68, 142–153.

    Article  Google Scholar 

  • Bull, J.J. (1987) Evolution of phenotypic variance. Evolution 41, 303–315.

    Article  Google Scholar 

  • Cavé, A.T. (1968) The breeding of the kestrel, Falco tinnunculus L., in the reclaimed area of Oostelijk Flevoland. Neth. J. Zool. 18, 313–407.

    Article  Google Scholar 

  • Charnov, E.L. and Krebs, J.R. (1974) On clutch size and fitness. Ibis 116, 217–219.

    Google Scholar 

  • Cody, M.L. (1966) A general theory of clutch size. Evolution 20, 174–184.

    Article  Google Scholar 

  • Cohen, D. (1967) Optimizing reproduction in a randomly varying environment when a correlation may exist between the conditions at the time a choice has to be made and the subsequent outcome. J. Theor. Biol. 16, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • DeSteven, D. (1980) Clutch size, breeding success and parental survival in the tree swallow (Iridoprocne bicolor). Evolution 34, 135–151.

    Article  Google Scholar 

  • Ellner, S. and Hairston, N.G. Jr. (1994) The role of overlapping generations in maintaining genetic variation in a fluctuating environment. Am. Nat. 143, 403–407.

    Article  Google Scholar 

  • Forbes, L.S. (1991) Insurance offspring and brood reduction in a variable environment: The costs and benefits of pessimism. Oikos 62, 325–332.

    Google Scholar 

  • Godfray, H.C.J., Partridge, L. and Harvey, P.H. (1991) Clutch size. Ann. Rev. Ecol. Syst. 22, 409–429.

    Article  Google Scholar 

  • Goodman, D. (1984) Risk spreading as an adaptive strategy in iteroparous life histories. Theor. Pop. Biol. 25, 1–20.

    Article  CAS  Google Scholar 

  • Haccou, P. and Iwasa, Y. (1995) Optimal mixed strategies in stochastic environments. Theor. Pop. Biol. 47, 212–243.

    Article  Google Scholar 

  • Högstedt, G. (1980) Evolution of clutch size in birds: Adaptive variation in relation to territory quality. Science 210, 1148–1150.

    PubMed  Google Scholar 

  • Högstedt, G. (1981) Should there be a positive or a negative correlation between survival of adults in a bird population and their clutch size? Am. Nat. 118, 568–571.

    Article  Google Scholar 

  • Iwasa, Y. and Haccou, P. (1994) Emergence patterns of male butterflies in stochastic environments. Evol. Ecol. 8, 503–523.

    Article  Google Scholar 

  • Johnson, N.L., Kotz, S. and Balakristan, N. (1995) Continuous Univariate Distributions, Vol. 2, 2nd edn. John Wiley, New York.

    Google Scholar 

  • Klomp, H. (1970) The determination of clutch size in birds: A review. Ardea 58, 1–124.

    Google Scholar 

  • Kluyver, H.N. (1951) The population ecology of the Great Tit, Parus m. major L. Ardea 39, 1–135.

    Google Scholar 

  • Konarzewski, M. (1993) The evolution of clutch size and hatching asynchrony in artricial birds: The e.ect of environmental variability, egg failure and predation. Oikos 67, 97–106.

    Google Scholar 

  • Kubo, T. and Iwasa, Y. (1996) Phenological pattern of tree regeneration in a model for forest species diversity. Theor. Pop. Biol. 49, 90–117.

    Article  Google Scholar 

  • Lack, D. (1947) The significance of clutch size. Ibis 89, 309–352.

    Google Scholar 

  • Lack, D. (1966) Population Studies of Birds. Clarendon Press, Oxford.

    Google Scholar 

  • Liou, L.W., Price, T., Boyce, M.S. and Perrins, C.M. (1993) Fluctuating environments and clutch size evo-lution in great tits. Am. Nat. 141, 507–516.

    Article  Google Scholar 

  • McGinley, M.A., Temme, D.H. and Geber, M.A. (1987) Parental investment in variable environments: Theoretical and empirical considerations. Am. Nat. 129, 283–303.

    Article  Google Scholar 

  • McNamara, J.M. (1995) Implicit frequency dependence and kin selection in fluctuating environments. Evol. Ecol. 9, 185–203.

    Article  Google Scholar 

  • McNamara, J.M. (1997) Optimal life histories for structured populations in fluctuating environments. Theor. Pop. Biol. 51, 94–108.

    Article  Google Scholar 

  • McNamara, J.M. and Houston, A.I. (1992) State-dependent life-history evolution and its implications for optimal clutch size. Evol. Ecol. 6, 170–185.

    Article  Google Scholar 

  • McNamara, J.M., Webb, J.N. and Collins, E.J. (1995) Dynamic optimisation in fluctuating environments. Proc. R. Soc. Lond. B 261, 279–284.

    Google Scholar 

  • Metz, J.A.J., Nisbet, R.M. and Geritz, S.A.H. (1993) How should we define ‘fitness’ for general ecological scenarios? TREE 7, 198–202.

    Google Scholar 

  • Mountford, M.D. (1973) The significance of clutch size. In The Mathematical Theory of the Dynamics of Biological Populations (M.S. Bartlett and R.W. Hiorns, eds), pp. 315–323. Academic Press, London.

    Google Scholar 

  • Murray Jr., B.G. (1979) Population Dynamics. Academic Press, New York.

    Google Scholar 

  • Murray Jr., B.G. and Nolan Jr., V. (1989) The evolution of clutch size. I. An equation for calculating clutch size. Evolution 43, 1699–1705.

    Article  Google Scholar 

  • Murray Jr., B.G., Fitzpatrick, J.W. and Woolfenden, G.E. (1989) The evolution of clutch size II. A test of the Murray-Nolan equation. Evolution 43, 1706–1711.

    Article  Google Scholar 

  • Nur, N. (1984a) The consequences of brood size for breeding in blue tits I. Adult survival, weight change and the cost of reproduction. J. Anim. Ecol. 53, 479–496.

    Article  Google Scholar 

  • Nur, N. (1984b) The consequences of brood size for breeding in blue tits II. Nestling weight, offspring survival and optimal brood size. J. Anim. Ecol. 53, 497–517.

    Article  Google Scholar 

  • Nur, N. (1988a) The cost of reproduction in birds: An examination of the evidence. Ardea 76, 155–168.

    Google Scholar 

  • Nur, N. (1988b) The consequences of brood size for breeding in blue tits III. Measuring the cost of repro-duction: Survival, future fecundity, and differential dispersal. Evolution 42, 351–362.

    Article  Google Scholar 

  • Perrins, C.M. (1965) Population fluctuations and clutch size in the great tit, Parus major, L. J. Anim. Ecol. 34, 601–647.

    Article  Google Scholar 

  • Perrins, C.M. and Moss, D. (1974) Survival of young great tits in relation to age of female parents. Ibis 116, 220–224.

    Google Scholar 

  • Perrins, C.M. and Moss, D. (1975) Reproductive rates in the great tit. J. Anim. Ecol. 44, 695–706.

    Article  Google Scholar 

  • Pettifor, R.A., Perrins, C.M. and McCleery, R.H. (1988) Individual optimization of clutch size in great tits. Nature 336, 160–162.

    Article  Google Scholar 

  • Philippi, T. and Seger, J. (1989) Hedging one's evolutionary bets, revisited. TREE 4, 41–44.

    Google Scholar 

  • Price, T. and Liou, L. (1989) Selection on clutch size in birds. Am. Nat. 134, 950–959.

    Article  Google Scholar 

  • Sasaki, A. and Ellner, S. (1995) The evolutionary stable phenotype distribution in a random environment. Evolution 49, 337–350.

    Article  Google Scholar 

  • Schaffer, W.M. (1974) Optimal reproductive effort in fluctuating environments. Am. Nat. 108, 783–790.

    Article  Google Scholar 

  • Schultz, D.L. (1991) Parental investment in temporally varying environments. Evol. Ecol. 5, 415–427.

    Article  Google Scholar 

  • Seger, J. and Brockmann, H.J. (1987) What is bet-hedging? In Oxford Surveys in Evolutionary Biology, Vol. 4 (P.H. Harvey and L. Partridge, eds), pp. 182–211. Oxford University Press, Oxford.

    Google Scholar 

  • Slatkin, M. (1974) Hedging one's evolutionary bets. Nature 250, 704–705.

    Google Scholar 

  • Smith, C.C. and Fretwell, S.D. (1974) The optimal balance between size and number of offspring. Am. Nat. 108, 499–506.

    Article  Google Scholar 

  • Smith, J.N.M. (1981) Does high fecundity reduce survival in song sparrows? Evolution 35, 1142–1148.

    Article  Google Scholar 

  • Stearns, S.C. (1976) Life-history tactics: A review of the ideas. Quart. Rev. Biol. 51, 3–47.

    Article  PubMed  CAS  Google Scholar 

  • Tuljapurkar, S. (1990) Population Dynamics in Variable Environments. Lecture Notes in Biomathematics. Springer-Verlag, Berlin.

    Google Scholar 

  • Yoshimura, J. and Shields, W.M. (1991) Components of uncertainty in clutch size optimization. Bull. Math. Biol. 54, 445–464.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haccou, P., Mcnamara, J.M. Effects of parental survival on clutch size decisions in fluctuating environments. Evolutionary Ecology 12, 459–475 (1998). https://doi.org/10.1023/A:1006524922128

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006524922128

Navigation