Skip to main content
Log in

Chlorophyll fluorescence transients of Photosystem II membrane particles as a tool for studying photosynthetic oxygen evolution

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The rise of the chlorophyll fluorescence yield of Photosystem II (PS II) membranes as induced by high-intensity actinic light comprises only two distinct phases: (1) the initial O-J increase and (2) the subsequent J-P increase. Partial inhibition of the PS II donor side by heating or washing procedures which remove peripheral PS II proteins or cofactors of the oxygen-evolving complex results in decrease of magnitude and rate of the J-P phase. The rate constant of the J-P increase is directly proportional to the steady-state rate of oxygen evolution; complete suppression of the J-P phase corresponds to full inhibition. A characteristic dip after J-level is observed only in Tris-washed or severely heated PS II membranes; manganese release correlates with appearance of the dip after J-level as verified by EPR spectroscopy. Presence of stabilizing cosolutes (glycine betaine, sucrose) or addition of donor-side cofactors (bicarbonate, chloride, calcium) to PS II membranes before heating (47 °C, 5 min) diminishes J-P phase suppression and prevents dip appearance, whereas the addition after heating is without effect. In conclusion, analysis of chlorophyll fluorescence transients of PS II membranes is a potentially useful tool for investigations on photosynthetic oxygen evolution. A decreased rate of the J-P phase can be employed as a convenient indicator for partial inhibition of oxygen-evolution activity; the appearance of a dip after J-level is suggestive of manganese release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allakhverdiev SI, Feyziev YM, Ahmed A, Hayashi H, Aliev JA, Klimov VV, Murata N and Carpentier R (1996) Stabilization of oxygen evolution and primary electron transport reactions in Photosystem II against heat stress with glycine betaine and sucrose. J Photochem Photobiol 34: 149–157

    Article  CAS  Google Scholar 

  • Barthélemy X, Popovic R and Franck F (1997) Studies on the O-J-I-P transient of chlorophyll fluorescence in relation to Photosystem II assembly and heterogeneity in plastids of green barley. J Photochem Photobiol B39: 213–218

    Google Scholar 

  • Berthold DA, Babcock GT and Yocum CF (1981) A highly resolved, oxygen-evolving Photosystem II preparation from spinach thylakoid membranes. EPR and electron-transport properties. FEBS Lett 134: 231–236

    Article  CAS  Google Scholar 

  • Briantais JM, Dacosta J, Goulas Y, Ducruet JM and Moya I (1996) Heat stress induces in leaves an increase of the minimum level of chlorophyll fluorescence, F0: A time resolved analysis, Photosynth Res 48: 189–196

    Article  CAS  Google Scholar 

  • Bukhov NG, Sabat SC and Mohanty P (1990) Analysis of chlorophyll a fluorescence changes in weak light in heat treated Amavanthus chloroplasts. Photosynth Res 23: 81–87

    Article  CAS  Google Scholar 

  • Cao J and Govindjee (1990) Chlorophyll a fluorescence transient as an indicator of active and inactive Photosystem II in thylakoid membranes. Biochim Biophys Acta 1015: 180–188

    Article  PubMed  CAS  Google Scholar 

  • Coleman WJ, Govindjee and Gutowsky HS (1988) The effect of chloride on the thermal inactivation of oxygen evolution. Photosynth Res 16: 261–276

    Article  CAS  Google Scholar 

  • Dau H (1994a) Molecular mechanisms and quantitative models of variable Photosystem II fluorescence. Photochem Photobiol 60: 1–23

    Article  CAS  Google Scholar 

  • Dau H (1994b) Short-term adaptation of plants to changing light intensities and its relation to Photosystem II photochemistry and fluorescence emission. J Photochem Photobiol 26: 3–27

    Article  CAS  Google Scholar 

  • Dau H and Sauer K (1991) Electric field effect on chlorophyll fluorescence and its relation to Photosystem II charge separation reactions studied by a salt-jump technique. Biochim Biophys Acta 1098: 49–60

    Article  CAS  Google Scholar 

  • Dau H and Sauer K (1992) Electric field effect on the picosecond fluorescence of Photosystem II and its relation to the energetics and kinetics of primary charge separation. Biochim Biophys Acta 1102: 91–106

    Article  CAS  Google Scholar 

  • Dau H, Windecker R and Hansen UP (1991) Effect of light-induced changed in thylakoid voltage on chlorophyll fluorescence of Aegopodium podagraria leaves. Biochim Biophys Acta 1057: 337–345

    CAS  Google Scholar 

  • Delmose R (1967) Etude de l'induction de fluorescence des algues vertes et des chloroplastes au début d'une illumination intense, Biochim Biophys Acta 143: 108–128

    Article  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust J Plant Physiol 22: 131–160

    CAS  Google Scholar 

  • Homann PH (1985) The association of functional anions with the oxygen-evolving center of chloroplasts. Biochim Biophys Acta 809: 311–319

    Article  CAS  Google Scholar 

  • Hsu BD (1993) Evidence for the contribution of the S-state transitions of oxygen evolution to the initial phase of fluorescence induction. Photosynth Res 36: 81–88

    Article  CAS  Google Scholar 

  • Joliot P, Joliot A, Bouges B and Barbieri G (1971) Studies of system II photocenters by comparative measurements of luminiscence, fluorescence and oxygen emission. Photochem. Photobiol 14: 287–305

    CAS  Google Scholar 

  • Klimov VV, Allakhverdiev SV, Baranov V and Feyziev YM (1995) Effects of bicarbonate and formate on the donor side of Photosystem 2. Photosynth Res 46: 219–225

    Article  CAS  Google Scholar 

  • Klimov VV, Baranov SV and Allakhverdiev SI (1997) Bicarbonate protects the donor side of Photosystem II against photoinhibition and thermoinactivation. FEBS Lett 418: 243–246

    Article  PubMed  CAS  Google Scholar 

  • Krause GH and Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol 42: 313–349

    Article  CAS  Google Scholar 

  • Kurreck J and Renger G (1998) Investigation of the plastoquinone pool size fluorescence quenching in Photosystem II (PS II) membrane fragments. In: Garab G (ed) Photosynthesis: Mechanism and Effect, Vol II, pp 1157–1160. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Lazár D (1999) Chlorophyll a fluorescence induction. Biochim Biophys Acta 1412: 1–28

    Article  PubMed  Google Scholar 

  • Lazár D and Pospíšil P (1999) Mathematical simulation of chlorophyll a fluorescence rise measured with 3-(3′,4′-dichlorophenyl)-1,1-dimethylu rea-treated barley leaves at room and high temperatures. Eur Biophys J 28: 468–477

    Article  PubMed  Google Scholar 

  • Lazár D, Pospíšil P and Nauš J (1999) Decrease of fluorescence intensity after the K step in chlorophyll a fluorescence induction is suppressed by electron acceptors and donors to Photosystem 2. Photosynthetica 37: 255–265

    Article  Google Scholar 

  • Miyao M, Murata N, Lavorel J, Maison-Peteri B, Boussac A and Etienne AL (1987) Effect of the 33 kDa protein on the S-state transitions in photosynthetic oxygen evolution. Biochim Biophys Acta 890: 151–159

    Article  CAS  Google Scholar 

  • Nash D, Miyao M and Murata N (1985) Heat inactivation of oxygen evolution in Photosystem II particles and ist acceleration by chloride depletion and exogenous manganese. Biochim Biophys Acta 807: 127–133

    Article  CAS  Google Scholar 

  • Neubauer C and Schreiber U (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: I. Saturation characteristics and partial control by the Photosystem II acceptor side. Z Naturforsch 42c: 1246–1254

    Google Scholar 

  • Ono T and Inoue Y (1983) Mn-preserving extraction of 33-, 24-and 16-kDa proteins from O2-evolving PS II particles by divalent salt-washing. FEBS Lett 164: 255–259

    Article  CAS  Google Scholar 

  • Ono T and Inoue Y (1988) Discrete extraction of the Ca atom functional for O2 evolution in higher plant Photosystem II by a simple low pH treatment. FEBS Lett 227: 147–152

    Article  CAS  Google Scholar 

  • Pospíšil P (1997) Mechanisms of non-photochemical chlorophyll fluorescence quenching in higher plants. Photosynthetica 34: 343–355

    Article  Google Scholar 

  • Pospíšil P and Tyystärvi E (1999) Molecular mechanism of high-temperature-induced inhibition of acceptor side of Photosystem II. Photosynth Res 62: 55–66

    Article  Google Scholar 

  • Schiller H and Dau H (2000) Preparation protocols for high-activity Photosystem II membrane particles of green algae and higher plants, pH dependence of oxygen evolution and comparison of S2-state multilane signal by X-band EPR. J Photochem Photobiol B Biol 55: 138–144

    Article  CAS  Google Scholar 

  • Schiller H, Dittmer J, Iuzzolino L, Dörner W, Meyer-Klaucke W, Solé VA, Nolting HF and Dau H (1998) Structure and orientation of the oxygen-evolving manganese complex of green algae and higher plants investigated by X-ray absorption linear dichroism spectroscopy on oriented Photosystem II membrane particles, Biochemistry 37: 7340–7350

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U and Krieger A (1996) Two fundamentally different types of variable chlorophyll fluorescence in vivo. FEBS Lett 397: 131–135

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U and Neubauer C (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: II Partial control by Photosystem II donor side and possible ways of interpretation. Z Naturforsch 42c: 1255–1264

    Google Scholar 

  • Schreiber U and Neubauer C (1990) O2-dependent electron flow, membrane energization and the mechanism of non-photochemical quenching of chlorophyll fluorescence. Photosynth Res 25: 279–293

    Article  CAS  Google Scholar 

  • Schreiber U, Bilger W and Neubauer C (1994) In: Schulze ED and Caldwell M (eds) Ecophysiology of Photosynthesis. Ecological Studies, Vol 100, pp 49–70. Springer-Verlag, Berlin

    Google Scholar 

  • Schreiber U, Endo T, Mi H and Asada K (1995a) Quenching analysis of chlorophyll fluorescence by the saturation pulse method: Particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol 36: 873–882

    CAS  Google Scholar 

  • Schreiber U, Hormann H, Neubauer C and Klughammer C (1995b) Assessment of Photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis. Aust J Plant Physiol 22: 209–220

    Article  CAS  Google Scholar 

  • Seidler A (1996) The extrinsic polypeptides of Photosystem II. Biochim Biophys Acta 1277: 35–60

    Article  PubMed  Google Scholar 

  • Srivastava A, Strasser RJ and Govindjee (1995) Polyphasic rise of chlorophyll a fluorescence in herbicide-resistant D1 mutants of Chlamydomonas reinardtii. Photosynth Res 43: 131–141

    Article  CAS  Google Scholar 

  • Srivastava A, Guissé B, Greppin H and Strasser RJ (1997) Regulation of antenna structure and electron transport in Photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochim Biophys Acta 1320: 95–106

    Article  CAS  Google Scholar 

  • Stemler AJ (1980) Inhibition of Photosystem II by formate: possible evidence for a direct role bicarbonate in photosynthetic oxygen evolution. Biochim Biophys Acta 593: 103–112

    Article  PubMed  CAS  Google Scholar 

  • Stirbet A, Govindjee, Strasser BJ and Strasser RJ (1998) Chlorophyll a fluorescence induction in higher plants: Modeling and numerical simulation. J Theor Biol 193: 131–151

    Article  CAS  Google Scholar 

  • Strasser BJ (1997) Donor side capacity of Photosystem II probed by chlorophyll a fluorescence transients. Photosynth. Res 52: 147–155

    Article  CAS  Google Scholar 

  • Strasser RJ, Srivastava A and Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61: 32–42

    CAS  Google Scholar 

  • Strasser BJ, Dau H, Heinze I and Senger H (1999) Comparison of light induced and cell cycle dependent changes in the photosynthetic apparatus: A fluorescence induction study on the green alga Scenedesmus obliquus. Photosynth Res 60: 217–227

    Article  CAS  Google Scholar 

  • Thompson LK, Blaylock R, Sturtevant JM and Brudvig GW (1989) Molecular basis of the heat denaturation of Photosystem II. Biochemistry 28: 6686–6695

    Article  PubMed  CAS  Google Scholar 

  • Van Rensen JJS, Xu C and Govindjee (1999) Role of bicarbonate in Photosystem II, water-plastoquinone oxido-reductase of plant photosynthesis. Physiol Plant 105: 585–592

    Article  CAS  Google Scholar 

  • Vernotte C, Etienne AL and Briantais JM (1979) Quenching of the system II chlorophyll fluorescence by the plastoquinone pool. Biochim Biophys Acta 545: 519–527

    Article  PubMed  CAS  Google Scholar 

  • Williams WP and Gounaris K (1992) Stabilization of PS II-mediated electron transport in oxygen-evolving PS II core preparations by the addition of compatible cosolutes. Biochim Biophys Acta 110: 92–97

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Dau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pospíšil, P., Dau, H. Chlorophyll fluorescence transients of Photosystem II membrane particles as a tool for studying photosynthetic oxygen evolution. Photosynthesis Research 65, 41–52 (2000). https://doi.org/10.1023/A:1006469809812

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006469809812

Navigation