Skip to main content
Log in

Heterogeneous Chemistry and the O3 Budget in the Lower Mid-Latitude Stratosphere

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

A photochemical box model including a detailed heterogeneous chemistrymodule has been used to analyze in detail the effects of temperature andaerosol surface area on odd oxygen production/depletion in the lowerstratosphere at 30° S. Results show that for background aerosolloading, the hydrolysis of BrONO2 and N2O5are most important atall temperatures studied except when the temperature falls below about205 K, when ClONO2 hydrolysis becomes most important. Thisprocessing leads to removal of active nitrogen to form nitric acid andenhancement of HOx, BrOx, ClOx levels. Detailed O3 budgets asa function of temperature are presented showing how ozone loss andproduction terms vary with changes in stratospheric sulfate aerosol loadingfor the individual families. For (most) aerosol loading levels, thelargest ozone losses occurred at warmer temperatures due to the strongtemperature dependence of the NOx ozone-destroying reactions. Theexception to this occurred for the conditions representative of volcanicloading, which showed a strong increase in ozone destruction due toincreases in destruction from the ClOx and HOx families.The ozoneproduction term k[NO][HO2] did not show a strong dependence oneithertemperature or aerosol loading, due to the offsetting effect of reducedNOxand increased HOx concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D. E., 1983: The troposphere-stratosphere radiation field at twilight: A spherical model, Planet. Space Sci. 31, 1517-1523.

    Google Scholar 

  • Avallone, L. M., Toohey, D. W., Schauffer, S. M., Pollock, W. H., Heidt, L. E., Atlas, E. L., and Chan, K. R., 1995: In situ measurements of BrO during AASE II, Geophys. Res. Lett. 22, 831-834.

    Google Scholar 

  • Barnett, J. J. and Corney, M., 1985: Middle atmosphere reference model derived from satellite data, in Science Committee for Solar-Terrestrial Physics, Handbook for MAP 16, Urbana, IL.

  • Brune, W. H., Anderson, J. G., and Chan, K. R., 1989: In situ observations of BrO over Antarctica: ER-2 aircraft results from 54° S to 72° S latitude, J. Geophys. Res. 94, 16639-16647.

    Google Scholar 

  • Carlotti, M., Ade, P. A. R., Carli, B., Ciarpallini, P., Cortesi, U., Griffin, M. J., Lepri, G., Mencaraglia, F., Murray, A. G., Nolt, I. G., Park, J. H., and Radostitz, J. V., 1995: Measurement of stratospheric HBr using high resolution far infrared spectroscopy, Geophys. Res. Lett. 22, 3207-3210.

    Google Scholar 

  • Carslaw, K. S., Luo, B. P., Clegg, S. L., Peter, T., Brimblecombe, P., and Crutzen, P. J., 1994: Stratospheric aerosol growth and HNO3 gas phase depletion from coupled HNO3 and water uptake by liquid particles, Geophys. Res. Lett. 21, 2479-2482.

    Google Scholar 

  • Carslaw, K. S., Luo, B. P., and Peter, T., 1995: An analytic expression for the composition of aqueous HNO3-H2SO4 stratospheric aerosols including gas phase removal of HNO3, Geophys. Res. Lett. 22, 1877-1880.

    Google Scholar 

  • Chartrand, D. J. and McConnell, J. C., 1998: Evidence for HBr production due to minor channel branching at mid-latitudes, Geophys. Res. Lett. 25, 55-58.

    Google Scholar 

  • Danilin, M. and McConnell, J. C., 1995: Stratospheric effects of bromine activation on/in sulfate aerosols, J. Geophys. Res. D6, 11237-11243.

    Google Scholar 

  • de Grandpré. J., Sandilands, J. W., McConnell, J. C., Beagley, S. R., Croteau, P., and Danilin, M. Y., 1997: Canadian middle atmosphere climate model: Preliminary chemistry results, Atmos. Ocean 35, 385-431.

    Google Scholar 

  • DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., Molina, M. J., 1997: Chemical kinetics and photochemical data for use in stratospheric modeling, JPL Publication 97-4, Pasadena, CA.

    Google Scholar 

  • Dessler, A. E. et al., 1995: Correlated observations of HCl and ClONO2 from UARS and implications for stratospheric chlorine partitioning, Geophys. Res. Lett. 22, 1721-1724.

    Google Scholar 

  • Donaldson, D. J., Ravishankara, A. R., and Hanson, D. R., 1997: Detailed study of HOCl + HCl ? Cl2 + H2O in sulfuric acid, J. Phys. Chem. 101, 4717-4725.

    Google Scholar 

  • Fahey, D. W. et al., 1993: In situ measurements constraining the role of sulfate aerosols in midlatitude ozone depletion, Nature 363, 509-514.

    Google Scholar 

  • Farman, J. C., Gardiner, B. G., and Shanklin, J. D., 1985: Large losses of the total ozone in Antarctica reveal seasonal ClOx/NOx interaction, Nature 315, 207-210.

    Google Scholar 

  • Gear, C. W., 1971: Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall, Englewood Cliffs, N.J., p. 253.

    Google Scholar 

  • Hanson, D. R. and Ravishankara, A. R., 1994: Reactive uptake of ClONO2 onto sulfuric acid due to reaction with HCl and H2O, J. Phys. Chem. 98, 5728-5735.

    Google Scholar 

  • Hanson, D. R., Ravishankara, A. R., and Lovejoy, E. R., 1996: Reaction of BrONO2 with H2O on submicron sulfuric acid aerosol and the implications for the lower stratosphere, J. Geophys. Res. 101, 9036-9069.

    Google Scholar 

  • Hanson, D. R., Ravishankara, A. R., and Solomon, S., 1994: Heterogeneous reaction in sulfuric acid aerosols: A framework for model calculations, J. Geophys. Res. 90, 3615-3629.

    Google Scholar 

  • Hofmann, D. J. and Solomon, S., 1989: Ozone destruction through heterogeneous chemistry following the eruption of El Chichon, J. Geophys. Res. 94, 5029-5041.

    Google Scholar 

  • Kaminski, J. W., McConnell, J. C., and Boville, B. A., 1996: A study of stratospheric chemistry using a 3-D global chemical transport model-I mid-latitude, J. Geophys. Res. 101, 28,731-28,751.

    Google Scholar 

  • Kinnison, D. E., Grant, K. E., Connell, P. S., Rotman, D. A., and Wuebbles, D. J., 1994: The chemical and radiative effects of the Mount Pinatubo eruption, J. Geophys. Res. 99, 25705-25731.

    Google Scholar 

  • Lary, D. J., 1996: Gas phase atmospheric bromine photochemistry, J. Geophys. Res. 101, 1505-1516.

    Google Scholar 

  • Lary, D. J., Chipperfield, M. P., Toumi, R., and Tenton, T. M., 1996: Heterogeneous atmospheric bromine chemistry, J. Geophys. Res. 101, 1489-1504.

    Google Scholar 

  • McCormick, M. P., Thomason, L. W., and Trepte, C. R., 1995: Atmospheric effects of the Mt. Pinatubo eruption, Nature 373, 399-404.

    Google Scholar 

  • McLinden, C. A., Chartrand, D. J., Griffioen, E., McConnell, J. C., and McElroy, C. T., 1997: The impact of non-Lambertian wavelength-dependent reflecting surfaces on stratospheric radiation and chemistry, J. Atmos. Chem. 26, 29-64.

    Google Scholar 

  • Molina, L. T. and Molina, M. J., 1987: Production of Cl2O2 from the self reaction of the ClO radical, J. Phys. Chem. 91, 433-436.

    Google Scholar 

  • Nolt, I. G., Ade, P. A. R., Alboni, F., Carli, B., Carlotti, M., Cortesi, U., Epifani, M., Griffin, M. J., Hamilton, P. A., Lee, C., Lepri, G., Mencaraglia, F., Murray, A. G., Park, J. H., Park, K., Raspollini, P., Ridolfi, M., and Vanek, M. D., 1997: Stratospheric HBr concentration profile from far-infrared emission spectroscopy, Geophys. Res. Lett. 24, 281-284.

    Google Scholar 

  • Plass, G. N., Kattawar, G. W., and Catchings, F. E., 1984: Matrix operator theory of radiative transfer. 1: Rayleigh Scattering, Appl. Optics 12, 314-329.

    Google Scholar 

  • Randeniya, L. K., Vohralik, P. F., Plumb, I. C., Ryan, K. R., and Baughcum, S. L., 1996: Impact of the heterogeneous hydrolysis of BrONO2 on calculated ozone changes due to HSCT aircraft and increased sulfate aerosol levels, Geophys. Res. Lett. 23, 343-346.

    Google Scholar 

  • Rodriguez, J. M., Ko, M. K. W., and Sze, N. D., 1991: Role of heterogeneous conversion of N2O5 on sulfate aerosols in global ozone losses, Nature 352, 134-137.

    Google Scholar 

  • Rosenfield, J. E., Considine, D. B., Meade, P. E., Bacmeister, J. T., Jackman, C. H., and Schoeberl, M. R., 1997: Stratospheric effects of Mount Pinatubo aerosol studied with a coupled two-dimensional model, J. Geophys. Res. 102, 3649-3670.

    Google Scholar 

  • Slusser, J. R., Fish, D. J., Strong, E. K., Jones, R. L., Roscoe, H. K., and Sarkissian, A., 1997: Five years of NO2 vertical column measurements at Faraday (65° S): Evidence for the hydrolysis of BrONO2 on Pinatubo aerosols, J. Geophys. Res. 102, 12987-12993.

    Google Scholar 

  • Solomon, S., Portmann, R. W., Garcia, R. R., Thomason, L. W., Poole, L. R., and McCormick, M. P., 1996: The role of aerosol variations in anthropogenic ozone depletion at northern mid-latitudes, J. Geophys. Res. 101, 6713-6727.

    Google Scholar 

  • Thomason, L. W., Poole, L. R., and Deshler, T., 1997: A global climatology of stratospheric aerosol surface area deduced from Stratospheric Aerosol and Gas Experiment II measurements: 1984-1994, J. Geophys. Res. 102, 8967-8976.

    Google Scholar 

  • Tie, X. and Brasseur, G., 1994: Two-dimensional simulation of Pinatubo aerosol and its effect on stratospheric ozone, J. Geophys. Res. 199, 20545-20562.

    Google Scholar 

  • Tie, X. and Brasseur, G., 1996: The importance of heterogeneous bromine chemistry in the lower stratosphere, Geophys. Res. Lett. 23, 2505-2508.

    Google Scholar 

  • Tie, X., Granier, C., Randel, W., and Brasseur, G. P., 1997: Effects of interannual variation of temperature on heterogeneous reactions and stratospheric ozone, J. Geophys. Res. 102, 23519-23527.

    Google Scholar 

  • Webster, C. R. et al., 1993a: In situ measurements of the ClO/HCl ratio: Heterogeneous processing on sulfate aerosols and polar stratospheric clouds, Geophys. Res. Lett. 20, 2523-2526.

    Google Scholar 

  • Webster, C. R. et al., 1993b: Hydrochloric acid loss and chlorine chemistry on polar stratospheric cloud particles in the Arctic winter, Science 261, 1130-1134.

    Google Scholar 

  • Wennberg, P. O. et al., 1994: Removal of stratospheric O3 by radicals: In situ measurements of OH, HO2, NO, NO2, ClO, and BrO, Science 266, 398-404.

    Google Scholar 

  • Yung, Y. L., Pinto, J. P., Watson, R. T., and Sander, S. P., 1980: Atmospheric bromine and ozone perturbations in the lower stratosphere, J. Atmos. Sci. 37, 339-353.

    Google Scholar 

  • Zander, R., Gunson, M. R., Foster, J. C., Rinsland, C. P., and Namkung, J., 1990: Stratospheric ClONO2, HCl and HF concentration profiles derived from the Atmospheric Trace Molecules Spectroscopy experiment Spacelab 3 observation: An update, J. Geophys. Res. 95, 20519-20525.

    Google Scholar 

  • Zhao, X., Turco, R. P., Kao, C.-Y. J., and Elliott, S., 1997: Aerosol-induced chemical perturbations of stratospheric ozone: Three dimensional simulations and analysis of mechanisms, J. Geophys. Res. 102, 3617-3637.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chartrand, D.J., McConnell, J.C. Heterogeneous Chemistry and the O3 Budget in the Lower Mid-Latitude Stratosphere. Journal of Atmospheric Chemistry 35, 109–149 (2000). https://doi.org/10.1023/A:1006280926678

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006280926678

Navigation