Skip to main content

Heterogeneous Atmospheric Chemistry of Nitrogen Oxides: New Insights from Recent Field Measurements

  • Conference paper
  • First Online:
Disposal of Dangerous Chemicals in Urban Areas and Mega Cities

Abstract

The heterogeneous chemistry of nitrogen oxides that occurs in the dark is important to both the overall budgets of reactive nitrogen in the atmosphere, as well as the formation of oxidants. Two of the most relevant processes include the conversion of NO2 to HONO on ground surfaces and the uptake of N2O5 to produce either HNO3 or ClNO2 on aerosol surfaces. Results from recent field measurements that have investigated the latter process have demonstrated several important findings. First, the uptake of N2O5 is highly variable, and the uptake coefficient, γ(N2O5), is often smaller than model parameterizations based on laboratory studies would suggest. Second, production of ClNO2 is much more efficient than previously thought, and is formed in relatively high yields even at interior continental sites that are well removed from direct sources of sea spray. Finally, N2O5 uptake and ClNO2 production both vary strongly with height in the nocturnal boundary layer, leading to significant complexity in this nighttime chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander B, Hastings MG, Allman DJ, Dachs J, Thornton JA, Kunasek SA (2009) Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition of (Δ17O) of atmospheric nitrate. Atmos Chem Phys 9:5043–5056

    Article  CAS  Google Scholar 

  2. Apodaca RL, Huff DM, Simpson WR (2008) The role of ice in N2O5 heterogeneous hydrolysis at high latitudes. Atmos Chem Phys 8:7451–7463

    Article  CAS  Google Scholar 

  3. Behnke W, George C, Scheer V, Zetzsch C (1997) Production and decay of ClNO2, from the reaction of gaseous N2O5 with NaCl solution: bulk and aerosol experiments. J Geophys Res Atmos 102:3795–3804

    Article  CAS  Google Scholar 

  4. Bertram TH, Thornton JA (2009) Toward a general parameterization of N2O5 reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride. Atmos Chem Phys 9:8351–8363

    Article  CAS  Google Scholar 

  5. Bertram TH, Thornton JA, Riedel TP, Middlebrook AM, Bahreini R, Bates TS, Quinn PK, Coffman DJ (2009) Direct observations of N2O5 reactivity on ambient aerosol particles. Geophys Res Lett 36:L19803

    Article  Google Scholar 

  6. Bröske R, Kleffmann J, Wiesen P (2003) Heterogeneous conversion of NO2 on secondary organic aerosol surfaces: a possible source of nitrous acid (HONO) in the atmosphere. Atmos Chem Phys 3:469–474

    Article  Google Scholar 

  7. Brown SS, Stark H, Ravishankara AR (2003) Applicability of the steady-state approximation to the interpretation of atmospheric observations of NO3 and N2O5. J Geophys Res 10(8):D174539

    Google Scholar 

  8. Brown SS, Ryerson TB, Wollny AG, Brock CA, Peltier R, Sullivan AP, Weber RJ, Dubé WP, Trainer M, Meagher JF, Fehsenfeld FC, Ravishankara AR (2006) Variability in nocturnal nitrogen oxide processing and its role in regional air quality. Science 311:67–70

    Article  CAS  Google Scholar 

  9. Brown SS, Dubé WP, Osthoff HD, Wolfe DE, Angevine WM, Ravishankara AR (2007) High resolution vertical distributions of NO3 and N2O5 through the nocturnal boundary layer. Atmos Chem Phys 7:139–149

    Article  CAS  Google Scholar 

  10. Brown SS, Dubé WP, Fuchs H, Ryerson TB, Wollny AG, Brock CA, Bahreini R, Middlebrook AM, Neuman JA, Atlas E, Trainer M, Fehsenfeld FC, Ravishankara AR (2009) Reactive uptake coefficients for N2O5 determined from aircraft measurements during TexAQS 2006; comparison to current model parameterizations. J Geophys Res 114:D00F10

    Article  Google Scholar 

  11. Chameides WL (1978) Photo-chemical role of tropospheric nitrogen oxides. Geophys Res Lett 5:17–20

    Article  CAS  Google Scholar 

  12. Chang WL, Bhave PV, Brown SS, Riemer N, Stutz J, Dabdub D (2011) Heterogeneous atmospheric chemistry, ambient measurements, and model calculations of N2O5: a review. Aerosol Sci Technol 45:655–685

    CAS  Google Scholar 

  13. Davis JM, Bhave PM, Foley KM (2008) Parameterization of N2O5 reaction probabilities on the surface of particles containing ammonium, sulfate and nitrate. Atmos Chem Phys 8:5295–5311

    Article  CAS  Google Scholar 

  14. Dentener FJ, Crutzen PJ (1993) Reaction of N2O5 on tropospheric aerosols: impact on the global distributions of NOx, O3, and OH. J Geophys Res 98:7149–7163

    Article  CAS  Google Scholar 

  15. Dubé WP, Brown SS, Osthoff HD, Nunley MR, Ciciora SJ, Paris MW, McLaughlin RJ, Ravishankara AR (2006) Aircraft instrument for simultaneous, in-situ measurements of NO3 and N2O5 via cavity ring-down spectroscopy. Rev Sci Instrum 7(7):034101

    Article  Google Scholar 

  16. Emmerson KM, Evans MJ (2009) Comparison of tropospheric gas-phase chemistry schemes for use within global models. Atmos Chem Phys 9:1831–1845

    Article  CAS  Google Scholar 

  17. Evans MJ, Jacob DJ (2005) Impact of new laboratory studies of N2O5 hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone and OH. Geophys Res Lett 3(2):L09813

    Article  Google Scholar 

  18. Finlayson-Pitts BJ, Ezell MJ, Pitts JNJ (1989) Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N2O5 and ClONO2. Nature 337:241–244

    Article  CAS  Google Scholar 

  19. Folkers M, Mentel TF, Wahner A (2003) Influence of an organic coating on the reactivity of aqueous aerosols probed by the heterogeneous hydrolysis of N2O5. Geophys Res Lett 3:L121644. doi:10.1029/2003GL017168

    Google Scholar 

  20. George C, Strekowski RS, Kleffmann J, Stemmler K, Ammann M (2005) Photoenhanced uptake of gaseous NO2 on solid organic compounds: a photochemical source of HONO? Faraday Discuss 130:195–210

    Article  CAS  Google Scholar 

  21. Heikes BG, Thompson AM (1983) Effects of heterogeneous processes on NO3, HONO and HNO3 chemistry in the troposphere. J Geophys Res 88:10883–10895

    Article  CAS  Google Scholar 

  22. Horowitz L (2006) Past, present, and future concentrations of tropospheric ozone and aerosols: methodology, ozone evaluation, and sensitivity to aerosol wet removal. J Geophys Res 11(1):D22211. doi:10.1029/2005JD006937

    Article  Google Scholar 

  23. Huff DM, Joyce PL, Fochesatto GJ, Simpson WR (2010) Deposition of dinitrogen pentoxide, N2O5, to the snowpack at high latitudes. Atmos Chem Phys 11:4929–4938

    Article  Google Scholar 

  24. Jacob DJ (2000) Heterogeneous chemistry and tropospheric ozone. Atmos Environ 34:2131–2159

    Article  CAS  Google Scholar 

  25. Jerrett M, Burnett RT, Pope CA, Ito K, Thurston G, Krewski D, Shi YL, Calle E, Thun M (2009) Long-term ozone exposure and mortality. N Engl J Med 360:1085–1095

    Article  CAS  Google Scholar 

  26. Kercher JP, Riedel TP, Thornton JA (2009) Chlorine activation by N2O5: simultaneous, in-situ detection of ClNO2 and N2O5 by chemical ionization mass spectrometry. Atmos Meas Tech 2:193–204

    Article  CAS  Google Scholar 

  27. Macintyre HL, Evans MJ (2010) Sensitivity of a global model to the uptake of N2O5 by tropospheric aerosol. Atmos Chem Phys 10:7409–7414

    Article  CAS  Google Scholar 

  28. Mathur R, Yu S, Kang D, Schere KL (2008) Assessment of the wintertime performance of developmental particulate matter forecasts with the Eta-Community Multiscale Air Quality modeling system. J Geophys Res 11(3):D02303

    Article  Google Scholar 

  29. Mielke LH, Furgeson A, Osthoff HD (2011) Observation of ClNO2 in a mid-continental urban environment. Environ Sci Technol 45:8889–8896

    Article  CAS  Google Scholar 

  30. Mozurkewich M, Calvert JG (1988) Reaction probability of N2O5 on aqueous aerosols. J Geophys Res 93:15889–15896

    Article  Google Scholar 

  31. Osthoff HD, Roberts JM, Ravishankara AR, Williams EJ, Lerner BM, Sommariva R, Bates TS, Coffman D, Quinn PK, Dibb JE, Stark H, Burkholder JB, Talukdar RK, Meagher JF, Fehsenfeld FC, Brown SS (2008) High levels of nitryl chloride in the polluted subtropical marine boundary layer. Nat Geosci 1:324–328

    Article  CAS  Google Scholar 

  32. Riemer N, Vogel H, Vogel B, Schell B, Ackerman I, Kessler C, Hass H (2003) Impact of the heterogeneous hydrolysis of N2O5 on chemistry and nitrate aerosol formation in the lower troposphere under photosmog conditions. J Geophys Res 10(8):4144

    Article  Google Scholar 

  33. Roberts JM, Osthoff HD, Brown SS, Ravishankara AR (2009) Laboratory studies of products of N2O5 uptake on Cl containing substrates. Geophys Res Lett 3(6):L20808

    Article  Google Scholar 

  34. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Climate change 2007: the physical science basis. contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Summary for policy makers. Cambridge University Press, Cambridge

    Google Scholar 

  35. Stutz J, Alicke B, Neftel A (2002) Nitrous acid formation in the urban atmosphere: gradient measurements of NO2 and HONO over grass in Milan, Italy. J Geophys Res Atmos 107:8192

    Article  Google Scholar 

  36. Stutz J, Alicke B, Ackermann R, Geyer A, White AB, Williams E (2004) Vertical profiles of NO3, N2O2, O3, and NOx in the nocturnal boundary layer: 1. Observations during the Texas Air Quality Study 2000. J Geophys Res 109:D12306

    Article  Google Scholar 

  37. Thornton JA, Kercher JP, Riedel TP, Wagner NL, Cozic J, Holloway JS, Dubé WP, Wolfe GM, Quinn PK, Middlebrook AM, Alexander B, Brown SS (2010) A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. Nature 464:271–274

    Article  CAS  Google Scholar 

  38. Tie X, Brasseur G, Emmons L, Horowitz L, Kinnison D (2001) Effects of aerosols on tropopsheric oxidants: a global model study. J Geophys Res 106:22931–22964

    Article  CAS  Google Scholar 

  39. Tie X, Emmons L, Horowitz L, Brasseur G, Ridley B, Atlas E, Stroud C, Hess P, Klonecki A, Madronich S, Talbot R, Dibb J (2003) Effect of sulfate aerosol on tropospheric NOx and ozone budgets: model simulations and TOPSE evidence. J Geophys Res 10(8):8364

    Article  Google Scholar 

  40. Wagner NL, Dubé WP, Washenfelder RA, Young CJ, Pollack IB, Ryerson TB, Brown SS (2011) Diode laser-based cavity ring-down instrument for NO3, N2O5, NO, NO2 and O3 from aircraft. Atmos Meas Tech 4:1227–1240

    Article  CAS  Google Scholar 

  41. Wahner A, Mentel TF, Sohn M (1998) Gas-phase reaction of N2O5 with water vapor: importance of heterogeneous hydrolysis of N2O5 and surface desorption of HNO3 in a large teflon chamber. Geophys Res Lett 25:2169–2172

    Article  CAS  Google Scholar 

  42. Wahner A, Mentel TF, Sohn M, Stier J (1998) Heterogeneous reaction of N2O5 on sodium nitrate aerosol. J Geophys Res Atmos 103:31103–31112

    Article  CAS  Google Scholar 

  43. Wong KW, Oh HJ, Lefer BL, Rappenglück B, Stutz J (2011) Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX. Atmos Chem Phys 11:3595–3609

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven S. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Brown, S.S., Wagner, N.L., Dubé, W.P., Roberts, J.M. (2013). Heterogeneous Atmospheric Chemistry of Nitrogen Oxides: New Insights from Recent Field Measurements. In: Barnes, I., Rudziński, K. (eds) Disposal of Dangerous Chemicals in Urban Areas and Mega Cities. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5034-0_10

Download citation

Publish with us

Policies and ethics