Skip to main content
Log in

The Role of Multiphase Chemistry in the Oxidation of Dimethylsulphide (DMS). A Latitude Dependent Analysis

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

A kinetic model for the OH-initiated homogeneous gas phase oxidation of dimethylsulfide (DMS) in the atmosphere (Saltelli and Hjorth, 1995), has been extended here to include the liquid phase chemistry. The updated model has then been employed to predict the temperature dependency of the MSA/nss-SO42- ratio. Model predictions have been compared with observational data reported in Bates et al. (1992). Sensitivity and uncertainty analysis has been performed in a Monte Carlo fashion to identify which are the important uncertainties on the input parameters and which are the possible combinations of parameter values that could explain the field observations. Results of the analysis have indicated that the temperature dependencies of the interactions between gas phase and liquid phase chemistry may to a large extent explain the observed T-dependence of the MSA/nss- SO42- ratio. The potential role of multi-phase atmospheric chemistry, not only in the case of SO2 but also of other oxidation products of DMS and, particularly, of DMS itself, has been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adewuyi, Y. G., 1989: Oxidation of biogenic sulfur compounds in aqueous media: Kinetics and environmental implications, in E. S. Saltzman and W. J. Cooper (eds), Biogenic Sulfur in the Environment, ACS Symposium Series 393, pp. 529–559.

  • Andreae, M. O., 1990: Ocean-atmosphere interaction in the global biogeochemical sulphur cycle, Marine Chem. 30, 1–29.

    Google Scholar 

  • Ayers, G. P., Cainey, J. M., Granek, H., and Leck, C., 1996: Dimethylsulfide oxidation and the ratio of methanesulfonate to non-sea-salt sulfate in the marine aerosol, J. Atmos. Chem. 25, 307–325.

    Google Scholar 

  • Barnes, I., Bastian, V., and Becker, K. H., 1988: Kinetic and mechanisms of the reaction of OH radicals with dimethyl sulfide, Int. J. Chem. Kinet. 20, 415–431.

    Google Scholar 

  • Barone, S. B., Turnipseed, A. A., and Ravishankara, A. R., 1995: Role of adducts in the atmospheric oxidation of dimethylsulphide, Faraday Discussion 100, 39–54.

    Google Scholar 

  • Bates, T. S. and Quinn, P. K., 1997: Dimethylsulphide (DMS) in the equatorial Pacific Ocean (1982 to 1996): Evidence of a climate feedback?, Geophys. Res. Lett. 24(8), 861–864.

    Google Scholar 

  • Bates, T. S., Calhoun, J. A., and Quinn, P. K., 1992: Variations in the methanesulfonate to sulfate molar ratio in submicrometer marine areosol particles over the South Pacific Ocean, J. Geophys. Res. 97, 9859–9865.

    Google Scholar 

  • Bates, T. S., Charlson, R. J., and Gammon, R. H., 1987: Evidence for the climatic role of marine biogenic sulphur, Nature 329, 319–321.

    Google Scholar 

  • Baulch, D. L., Cox, R. A., Crutzen, P. J., Hampson, R. F. Jr., Kerr, J. A., Troe, J., and Watson, R. T., 1982: Evaluation kinetic and photochemical data for atmospheric chemistry: Supplement I, Phys. Chem. Ref. Data 11, 327–496.

    Google Scholar 

  • Benkovitz, C. M., Berkowitz, C. M., Easter, R. C., Nemesure, S., Wagener, R., and Schwartz, S. E., 1994: Sulphate over the North Atlantic and adjacent continental regions: Evaluation for October and November 1986 using a three-dimensional model driven by observation-derived meteorology, J. Geophys. Res. 99, 20725–20756.

    Google Scholar 

  • Benson, S. W., 1978: Thermochemistry and kinetics of sulfur-containing molecules and radicals, Chem. Rev. 78, 23–35.

    Google Scholar 

  • Betterton, E. A., 1992: Oxidation of alkyl sulfides by aqueous peroxymonosulfate, Env. Sci. Tech. 26, 527–532.

    Google Scholar 

  • Byrd, R. B., Stewart, W. E., and Lightfoot, E. N., 1970: Transport Phenomena, Wiley and Sons.

  • Capaldo K. P. and Pandis, S. N., 1997: Dimethylsulphide chemistry in the remote marine atmosphere: Evaluation and sensitivity analysis of available mechanisms, J. Geophys. Res. 102, 23251–23267.

    Google Scholar 

  • Chameides, W. L. and Stelson, A. W., 1992: Aqueous-phase chemical processes in deliquescent seasalt aerosols: A mechanism that couples the atmospheric cycles of S and sea salt, J. Geophys. Res. 97, 20,565–20,580.

    Google Scholar 

  • Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G., 1987: Sulfur phytoplankton, atmospheric sulfur, cloud albedo and climate, Nature 326, 655–661.

    Google Scholar 

  • Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Jr., Hansen, J. E., and Hofmann, D. J., 1992: Climate forcing by anthropogenic aerosols, Science 255, 423–430.

    Google Scholar 

  • Clegg, S. L. and Brimblecombe, P., 1985: The solubility of methanesulphonic acid and its implications for atmospheric chemistry, Environ. Tech. Lett. 6, 269–278.

    Google Scholar 

  • Conover, W. J., 1980: Practical Nonparametric Statistics, 2nd ed., Wiley and Sons, New York.

    Google Scholar 

  • Dacey, J. W. H., Wakeham, S. G., and Howes, B. L., 1984: Henry's law constant for dimethylsulfide in freshwater and seawater, Geophys. Res. Lett. 11, 991–994.

    Google Scholar 

  • Davis, D., Chen, G., Kasibhatla, P., Jefferson, A., Tanner, D., Eisele, F., Lenschow, D., Neff, W., and Berresheim, H., 1998: DMS oxidation in the Antarctic marine boundary layer: Comparison of model simulations and field observation of DMS, DMSO, DMSO2, H2SO4(g), MSA(g), and MSA(p), J. Geophys. Res. 103, 1657–1678.

    Google Scholar 

  • De Bruyn, W. J., Shorter, J. A., Davidovits, P., Worsnop, D. R., Zahnisher, M. S., Kolb, C. E., 1994: Uptake of gas phase sulfur species methanesulfonic acid, dimethylsulfoxide, and dimethyl sulfone by aqueous surfaces, J. Geophys. Res. 99, 16927–16932.

    Google Scholar 

  • DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 1994: Chemical kinetics and photochemical data for use in stratospheric modeling, Evaluation number 11, JPL publication, 94-26.

  • Dentener, F. J., 1993: Heterogeneous chemistry in the troposphere, PhD Tthesis, University of Utrecht, The Netherlands.

    Google Scholar 

  • Dentener, F. J., 1994: Private communication.

  • Domine', F., Murrells, T. P., and Howard, C. J., 1990: Kinetics and mechanisms of the reactions of CH3S, CH3SO and CH3SS with O3 at 300 K and low pressure, J. Phys. Chem. 94, 5839–5847.

    Google Scholar 

  • Domine', F., Ravishankara, A. R., and Howard, C. J., 1992: Kinetics and mechanisms of the reactions of CH3S, CH3SO and CH3SS with O3 at 300 K and low pressure, J. Phys. Chem. 96, 2171–2178.

    Google Scholar 

  • Draper, N. R. and Smith, H., 1981: Applied Regression Analysis, Wiley and Sons, New York.

    Google Scholar 

  • Falbe-Hansen, H., Sørensen, S., Jensen, N. R., Hjorth, J., 1998: Unpublished results.

  • Helton, J. C., 1993: Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal, Rel. Eng. System Safety 42, 327–367.

    Google Scholar 

  • Helton, J. C., Garner, J. W., McCurley, R. D., and Rudeen, D. K., 1991: Sensitivity analysis techniques and results for the performance assessment at the waste isolation pilot plant, Sandia National Laboratories report SAND90-7103.

  • Hertel, O., Christensen, J., and Hov, Ø., 1994: Modelling of the end products of the chemical decomposition of DMS in the marine boundary layer, J. Atmos. Env. 28, 2431–2449.

    Google Scholar 

  • Homma, T. and Saltelli, A., 1991: PREP (Statistical Pre-Processor); Program description and user guide, CEC/JRC Scientifical and Technical Report, EUR 13922 EN, Luxemburg.

  • Hynes, A. J. and Wine, P. H., 1996: The atmospheric chemistry of dimethylsulfoxide (DMSO) kinetics and mechanism of the OH + DMSO reaction, J. Atmos. Chem. 24, 23–27.

    Google Scholar 

  • Hynes, A. J., Wine, P. H., and Semmes, D. H., 1986: Kinetics and mechanism of OH reactions with organic sulfides, J. Phys. Chem. 90, 4148–4156.

    Google Scholar 

  • Iman, R. L. and Helton, J. C., 1988: A comparison of uncertainty and sensitivity analysis techniques for computer models, Risk Anal. 8(1), 71–90.

    Google Scholar 

  • Iman, R. L., Helton, J. C., and Campbell, J. E., 1981: An approach to sensitivity analysis of computer models, Part I and II, J. Qual. Tech. 13(3,4), 174–183 and 232–240.

    Google Scholar 

  • Jefferson, A., Tanner, D. J., Eisele, F. L., Davis, D. D., Chen, G., Crawford, J., Huey, J. W., Torres, A. L., and Berresheim, H., 1998: OH photochemistry and methane sulphonic acid formation in the coastal Antarctic boundary layer, J. Geophys. Res. 103, 1647–1656.

    Google Scholar 

  • Jensen, N. R., Hjorth, J., Lohse, C., Skov, H., and Restelli, G., 1992: Products and mechanism of the gas phase reactions of NO3 with CH3SCH3, CD3SCD3, CH3SH and CH3SSCH3, J. Atmos. Chem. 14, 95–108.

    Google Scholar 

  • Koga, S. and Tanaka, H., 1993: Numerical study of the oxidation process of Dimethylsulphide in the marine atmosphere, J. Atmos. Chem. 17, 201–228.

    Google Scholar 

  • Koga, S. and Tanaka, H., 1996: Simulation of seasonal variations of sulfur compounds in the remote marine atmosphere, J. Atmos. Chem. 23, 163–192.

    Google Scholar 

  • Langner, J. and Rodhe, H., 1991: A global three-dimensional model of the tropospheric sulphur cycle, J. Atmos. Chem. 13, 225–265.

    Google Scholar 

  • Lee, Y. N. and Zhou, X., 1994: Aqueous reaction kinetics of ozone and dimethylsulfide and its atmosphere implications, J. Geophys. Res. 99, 3597–3605.

    Google Scholar 

  • Legrand, M. and Pasteur, E. C., 1998: Methane sulfonic acid to non-sea-salt sulfate ratio in coastal Antarctic aerosol and surface snow, J. Geophys. Res. 103, 10,991–11,006.

    Google Scholar 

  • Luria, M. and Sievering, H., 1991: Heterogeneous and homogeneous oxidation of SO2 in the remote marine atmosphere, J. Atmos. Environ. 25A, 1489–1496.

    Google Scholar 

  • McArdle, J. V. and Hoffman, M. R., 1983: Kinetics and mechanism of the oxidation of aquated sulfur dioxide by hydrogen peroxide at low pH, J. Phys. Chem. 87, 5425–5429.

    Google Scholar 

  • Mellouki, A., Jourdan, J. L., and LeBras, G., 1988: Dioscharge flow study of the CH3S + NO2 reaction mechanism using Cl + CH3SH as the CH3S source, Chem. Phys. Lett. 148, 231–236.

    Google Scholar 

  • Milne, P. J., Zika, R. G., and Saltzman, E. S., 1989: Oxidation of biogenic sulfur compounds in aqueous media: Kinetics and environmental implications, in E. S. Saltzman and W. J. Cooper (eds), Biogenic Sulfur in the Environment, ACS Symposium Series 393, pp. 518–528.

  • Moore, W. J., 1978: Physical Chemistry, Longman, London, p. 289.

    Google Scholar 

  • Olson, T. M. and Fessenden, R. W., 1992: Pulse radiolysis study of the reaction of OH radicals with methanesulfonate and hydroxymethanesulfonate, J. Phys. Chem. 96, 3317–3320.

    Google Scholar 

  • Oort, A. H., 1983: Global atmospheric circulation statistics 1958–1973, NOAA Professional Paper No. 14, U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Oreskes N., Shrader-Freschette, K., and Belitz, K., 1994: Verification, validation and confirmation of numerical models in the earth sciences, Science 263, 641–646.

    Google Scholar 

  • Pandis, S. N. and Seinfeld, J., 1989: Sensitivity analysis of a chemical mechanism for aqueous-phase atmospheric chemistry, J. Geophys. Res. 94, 1105–1126.

    Google Scholar 

  • Penner, J. E., Dickinson, R., and O'Neill, C., 1992: Effects of aerosol from biomass burning on the global radiation budget, Science 256, 1432–1434.

    Google Scholar 

  • Penner, J. E., Ghan, S. J., and Walton, J. J., 1991: The role of biomass burning in the budget and cycle of carbonaceous soot aerosols and their climate impact, in. J. Levine (ed.), Global Biomass Burning, MIT Press, Cambridge, MA, pp. 387–393.

    Google Scholar 

  • Pham, M., Muller, J.-F., Brasseur, G. P., Granier, C., and Megie, G., 1995: A three-dimensional study of the tropospheric sulphur cycle, J. Geophys. Res. 100, 26061–26092.

    Google Scholar 

  • Pruppacher, H. R., and Klett, J. D., 1980: Microphysics of Clouds and Precipitation, D. Reidel Publishing Company, Dordrecht, Holland.

    Google Scholar 

  • Raes, F., 1995: Entrainment of free tropospheric aerosols as a regulating mechanism for cloud condensation nuclei in the remote marine boundary layer, J. Geophys. Res. 100, 2893–2903.

    Google Scholar 

  • Ray, A., Vassalli, I., Laverdet, G., and LeBras, G., 1996: Kinetics of the thermal decomposition of the CH3SO2 radical and its reaction with NO2 at 1 Torr and 298 K, J. Phys. Chem. 100, 8895–8900.

    Google Scholar 

  • Remedio, J. M., Saltelli, A., Hjorth, J., and Wilson, J., 1994: KIM. A chemical kinetic model of the OH-initiated oxidation of DMS in air: A Monte Carlo analysis of the latitude effect, EUR Report 1994 EN.

  • Saltelli, A. and Hjorth, J., 1995: Uncertainty and ensitivity analyses of OH-initiated dimethylsulphide (DMS) oxidation kinetics, J. Atmos. Chem. 21, 187–221.

    Google Scholar 

  • Saltelli, A. and Homma, T., 1991: SPOP; Program description and user guide, CEC/JRC Scientifical and Technical Report, EUR 13924 EN, Luxemburg.

  • Saltelli, A. and Homma, T., 1992: Sensitivity analysis for model output; Performance of black box techniques on three international benchmark exercises, Comp. Stat. Data Anal. 13(1), 73–94.

    Google Scholar 

  • Saltelli, A. and Marivoet, J., 1990: Nonparametric statistics in sensitivity analysis for model output; A comparison of selected techniques, Rel. Eng. System Safety 28, 229–253.

    Google Scholar 

  • Saltelli, A., Andres, T. H., and Homma, T., 1993: Sensitivity analysis of model output; An investigation of new techniques, Comp. Stat. Data Anal. 15, 211–238.

    Google Scholar 

  • Saltzman, E. S., Savoie, D. L., Prospero, J. M., and Zika, R. G., 1986: Methane sulfonic acid and non-sea-salt sulfate in Pacific air: Regional and seasonal variations, J. Atmos. Chem. 4, 227–240.

    Google Scholar 

  • Savoie, D. L. and Prospero, J. M., 1989: Comparison of oceanic and continental sources of non-seasalt sulphate over the Pacific Ocean, Nature 339, 685–689.

    Google Scholar 

  • Schwartz, S. E., 1988: Are global cloud albedo and climate controlled by marine phytoplankton?, Nature 336, 441–445.

    Google Scholar 

  • Seinfeld, J., 1986: Air Pollution, Wiley and Sons, New York.

    Google Scholar 

  • Shaw, G. E., 1983: Bio-controlled thermostasis involving the sulphur cycle, Clim. Change 5, 297–303.

    Google Scholar 

  • Sørensen, S., Falbe-Hansen, H., Mangoni, M., Hjorth, J., and Jensen, N. R., 1996: Observation of DMSO and CH3S(O)OH from the gas phase reaction between DMS and OH, J. Atmos. Chem. 24, 299–315.

    Google Scholar 

  • Spiro, P. A., Jacob, D. J., and Logan, J. A., 1992: Global inventory of sulfur emissions with 1° × 1° resolution, J. Geophys. Res. 97, 6023–6036.

    Google Scholar 

  • Turanyi, T., 1990: Reduction of large reaction mechanisms, New J. Chem. 14, 795–803.

    Google Scholar 

  • Turnipseed, A. A. and Ravishankara, A. R., 1993: The atmospheric oxidation of dimethyl sulfide: Elementary step in a complex mechanism, in G. Restelli and G. Angeletti (eds), Proceeding of the International Symposium ‘Dimethylsulfide, Ocean, Atmosphere and Climate’, Kluwer, Dordrecht, pp. 185–196.

  • Turnipseed, A. A., Barone, S. B., and Ravishankara, A. R., 1992: Observation of CH3S addition to O2 in the gas phase, J. Phys. Chem. 96, 7502–7505.

    Google Scholar 

  • Turnipseed, A. A., Barone, S. B., and Ravishankara, A. R., 1993: Reactions of CH3S and CH3SOO with O3, NO2, and NO, J. Phys. Chem. 97, 5926–5934.

    Google Scholar 

  • Tyndall, G. S., and Ravishankara, A. R., 1989: Kinetic and mechanism of the reactions of CH3S with O2 and NO2 at 298 K, J. Phys. Chem. 93, 2426–2435.

    Google Scholar 

  • Tyndall, G. S. and Ravishankara, A. R., 1991: Atmospheric oxidation of reduced sulfur species, Int. J. Chem. Kinet. 23, 483–527.

    Google Scholar 

  • Van Dingenen, R., Jensen, N. R., Hjorth, J., and Raes, F., 1994: Peroxynitrate formation during the night-time oxidation of dimethylsulphide: its role as a reservoir species for aerosol formation, J. Atmos. Chem. 18, 211–237.

    Google Scholar 

  • Watts, S. F. and Brimblecombe, P., 1987: The Henry's law constant of dimethylsulfoxide, Env. Sci. Tech. 8, 483–486.

    Google Scholar 

  • Yin, F., Grosjean, D., and Seinfeld, J. H., 1990a: Photooxidation of dimethyl sulfide and dimethyl disulfide I: Mechanism development, J. Atmos. Chem. 11(4), 309–364.

    Google Scholar 

  • Yin, F., Grosjean, D., Flagan, R. C., and Seinfeld, J. H., 1990b: Photooxidation of dimethyl sulfide and dimethyl disulfide. II: Mechanism evaluation, J. Atmos. Chem. 11(4), 365–399.

    Google Scholar 

  • Zimmerman, P. H., 1984: Ein dreidimensionales, numerishes Transportmodell für atmosphärische Spurenstoffen, PhD Thesis University of Mainz, FRG.

    Google Scholar 

  • Zimmerman, P. H., Feichter, J., Wrath, H. K., Crutzen, P. J., and Weiss, W., 1989: A global three dimensional source-receptor modle investigation using 85Kr, Atmos. Environ. 23, 25–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campolongo, F., Saltelli, A., Jensen, N.R. et al. The Role of Multiphase Chemistry in the Oxidation of Dimethylsulphide (DMS). A Latitude Dependent Analysis. Journal of Atmospheric Chemistry 32, 327–356 (1999). https://doi.org/10.1023/A:1006154618511

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006154618511

Navigation