Skip to main content
Log in

Identification of genes specifically expressed in cauliflower reproductive meristems. Molecular characterization of BoREM1

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Using the meristems of the cauliflower curd as a source of tissue and a series of subtractive hybridizations and amplification reactions, we have constructed a cDNA library highly enriched in cDNAs expressed in reproductive meristems. The analysis of a sample of 250 clones from this library identified 22 cDNA clones corresponding to genes specifically expressed in these cauliflower meristems. Apart from two clones that corresponded to APETALA1, and two other ones showing similarity to different aminoacyl-tRNA synthetases, the remaining clones showed no similarity to any sequence in the databases and may correspond to novel genes. One of these clones, BoREM1, was further characterized and found to correspond to a gene encoding a protein with features of regulatory proteins that follows a expression pattern very similar to the LEAFY transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altschul F, Gish F, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 215: 403–410(1990).

    Article  PubMed  Google Scholar 

  2. Anthony RG, James PE, Jordan BR: Cloning and sequence analysis of aflo/lfy homologue isolated from cauliflower (Bras-sica oleracea L. var. botrytis). Plant Mol Biol 22: 1163–1166 (1993).

    PubMed  Google Scholar 

  3. Anthony RG, James PE, Jordan BR: The role of meristem identity genes in regulating cauliflower (Brassica oleracea L. var. botrytis) curd development. Flowering Newsl 17: 21–26 (1994).

    Google Scholar 

  4. Anthony RG, James PE, Jordan BR: The cDNA sequence of a cauliflower apetala1/squamosa homologs. Plant Physiol 108: 441–442(1995).

    PubMed  Google Scholar 

  5. Anthony, RG, James PE, Jordan BR: Cauliflower (Brassica oleracea var. botrytis L.) curd development: the expression of meristem identity genes. J Exp Bot 47: 181–188(1996).

    Google Scholar 

  6. Ausubel FM, Brent R, Kingston RE, Moore DD, Seideman JG, Smith JA, Struhl JA: Current Protocols in Molecular Biology. Greene Associates/Wiley Interscience, New York (1987).

    Google Scholar 

  7. Blázquez MA, Soowal LN, Lee I, Weigel D: LEAFY expres-sion and flower initiation in Arabidopsis. Development 124: 3835–3844(1997).

    Google Scholar 

  8. Brakhage AA, Wozny M, Putzer H: Structure and nucleotide sequence of the Bacillus subtilis phenylalanyl-tRNA syn-thetase genes. Biochimie 72: 725–734(1990).

    PubMed  Google Scholar 

  9. Carr SM, Irish VF: Floral homeotic gene expression defines developmental arrest stages in Brassica oleracea L. vars. botrytis and italica. Planta 201: 179–188(1997).

    PubMed  Google Scholar 

  10. Fett R, Knippers R: The primary structure of human glutaminyl-tRNA synthetase. A highly conserved core, amino acid repeat regions and homologies with translation elongation factors. J Biol Chem266: 1448–1455(1991).

    PubMed  Google Scholar 

  11. Haughn GW, Schultz EA, Martínez-Zapater JM: The regula-tion of flowering in Arabidopsis thaliana: meristems, morpho-genesis and mutants. Can J Bot 73: 959–981(1995).

    Google Scholar 

  12. Hempel FD, Weigel D, Mandel MA, Ditta G, Zambryski PC, Feldman LJ, Yanofsky MF: Floral determination and expres-sion of floral regulatory genes in Arabidopsis. Development 124: 3845–3853(1997).

    Google Scholar 

  13. Hodge R, Paul W, Draper J, Scott R: Cold-plaque screening: a simple technique for the isolation of low abundance, differen-tially expressed transcripts from conventional cDNA libraries. Plant J 2: 257–260(1992).

    Google Scholar 

  14. Huijser P, Klein J, Lönnig WE, Meijer H, Saedler H, Som-mer H: Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus EMBO J 11: 1239–1249(1992).

    PubMed  Google Scholar 

  15. Hurst HC: Transcription factors. I. bZIP proteins. Protein Profile 1: 123–168(1994).

    PubMed  Google Scholar 

  16. Ingram JC, Goodrich J, Wilkinson MD, Simon RD, Haughn GW, Coen ES: Parallels between unusual floral organs and fim-briata, genes controlling flower development in Arabidopsis and Antirrhinum. Plant Cell 7: 1501–1510(1995).

    PubMed  Google Scholar 

  17. Jarillo JA, Capel J, Leyva A, Martínez-Zapater JM, Salinas J: Two related low temperature inducible genes of Arabidopsis encode proteins showing high homology to 14.3.3 proteins, a family of putative kinase regulators. Plant Mol Biol 25: 693–704 (1994).

    PubMed  Google Scholar 

  18. Jofuku KD, den Boer BGW, Van Montagu M, Okamuro JK: Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6: 1211–1225(1994).

    PubMed  Google Scholar 

  19. Kania T, Russenberger D, Peng S, Apel K, Melzer S: FPF1 promotes flowering in Arabidopsis. Plant Cell 9: 1327–1338 (1997).

    PubMed  Google Scholar 

  20. Kelly AJ, Zagotta MT, White RA, Chang C, Meeks-Wagner DR: Identification of genes expressed in the tobacco shoot apex during the floral transition. Plant Cell 2: 963–972(1990).

    PubMed  Google Scholar 

  21. Kempin SA, Savidge B, Yanofsky MF: Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267: 522–525 (1995).

    PubMed  Google Scholar 

  22. Ko, MSH: An equalized cDNA library by the reassotiation of short double-stranded cDNAs. Nucl Acids Res 18: 5705–5711 (1990).

    PubMed  Google Scholar 

  23. Koornneef M, Alonso-Blanco C, Peeters AJM, Soppe W: Ge-netic control of flowering time in Arabidopsis. Annu Rev Plant Physiol Plan Mol Biol 49: 345–370. (1998).

    Google Scholar 

  24. Lütcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA: Selection of AUG initiation codons differs in plants and animals. EMBO J 6: 43–48(1987).

    PubMed  Google Scholar 

  25. Ma H: To be, or not to be, a flower-control of floral meristem identity. Trends Genet 14: 26–32(1998)

    PubMed  Google Scholar 

  26. Ma H, Yanofsky MF, Meyerowitz EM: AGL1- AGL6,anAra-bidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev 5: 484–495(1991).

    PubMed  Google Scholar 

  27. Mandel M, Yanofsky MF: A gene triggering flower develop-ment in Arabidopsis. Nature 377: 522–524(1995).

    PubMed  Google Scholar 

  28. Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF: Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273–277(1992).

    Article  PubMed  Google Scholar 

  29. Martínez-Zapater JM, Coupland G, Dean C, Koornneef M: The transition to flowering in Arabidopsis. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis, pp. 403–433. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1994).

    Google Scholar 

  30. Medford JI, Elmer JS, Klee HJ: Molecular cloning and charac-terization of genes expressed in shoot apical meristems. Plant Cell 3: 359–370(1991).

    PubMed  Google Scholar 

  31. Meeks-Wagner DR, Dennis ES, Tran Thanh Van K, Peacock WJ: Tobacco genes expressed during in vitro floral initiation and their expression during normal plant development. Plant Cell 1: 25–35(1989).

    Article  PubMed  Google Scholar 

  32. Melzer S, Majewski DM, Apel K: Early changes in gene expression during the transition from vegetative to genera-tive growth in the long-day plant Sinapis alba. Plant Cell 2: 953–961(1990).

    PubMed  Google Scholar 

  33. Mitchell PJ, Tjian R: Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245: 371–378(1989).

    PubMed  Google Scholar 

  34. Mizukami Y, Ma H: Determination of Arabidopsis floral meristem identity by AGAMOUS. Plant Cell 9: 393–408 (1997).

    PubMed  Google Scholar 

  35. O'shea EK, Rutkowski R, Kim PS: Evidence that the leucine zipper is a coiled coil. Science 243: 538–542(1989).

    PubMed  Google Scholar 

  36. Pickett FB, Meeks-Wagner DR: Seeing double: appreciating genetic redundancy. Plant Cell 7: 1347–1356(1995).

    Article  PubMed  Google Scholar 

  37. Piñ eiro M, Coupland G: The control of flowering time and floral identity in Arabidopsis. Plant Physiol, in press.

  38. Pri-Hadash A, Hareven D, Lifschitz E: A meristem-related gene from tomato encodes a dUTPase: analysis of expres-sion in vegetative and floral meristems. Plant Cell 4: 149–159 (1992).

    PubMed  Google Scholar 

  39. Putterill J, Robson F, Lee K, Simon R, Coupland G: The CONSTANS gene of Arabidopsis promotes flowering and en-codes a protein showing similarities to zinc finger transcription factors. Cell 80: 847–857(1995).

    PubMed  Google Scholar 

  40. Raikhel N: Nuclear targeting in plants. Plant Physiol 100: 1627–1632(1992).

    Google Scholar 

  41. Ruiz-García L, Madueño F, Wilkinson M, Haughn GW, Sali-nas J, Martínez-Zapater JM: Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell 9: 1921–1934(1997).

    PubMed  Google Scholar 

  42. Sadik S, Ozbun JL: Development of vegetative and reproduc-tive apices of cauliflower, Brassica oleracea var. botrytis. Bot Gaz 129: 365–370(1968).

    Google Scholar 

  43. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  44. Seipel K, Georgiev O, Schaffner W: Different activation do-mains stimulate transcription from remote ('enhancer') and proximal ('promoter') positions. EMBO J 11: 4961–4968 (1992).

    PubMed  Google Scholar 

  45. Shahar T, Hennig N, Gutfinger T, Hareven D, Lifschitz E: The tomato 66.3-kD polyphenoloxidase gene: molecular identifi-cation and developmental expression. Plant Cell 4: 135–147 (1992).

    Article  PubMed  Google Scholar 

  46. Wang Z, Brown DD: A gene expression screen. Proc Natl Acad Sci USA 88: 11505–11509(1991).

    PubMed  Google Scholar 

  47. Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM: LEAFY controls floral meristem identity in Arabidopsis. Cell 68: 843–859(1992).

    Google Scholar 

  48. Weigel D, Nilsson O: A developmental switch sufficient for flower initiation in diverse plants. Nature 377: 495–500 (1995).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franco-Zorrilla, J.M., Fernández-calvín, B., Madueño, F. et al. Identification of genes specifically expressed in cauliflower reproductive meristems. Molecular characterization of BoREM1. Plant Mol Biol 39, 427–436 (1999). https://doi.org/10.1023/A:1006130629100

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006130629100

Navigation