Skip to main content
Log in

Purification and characterization of reaction centers from the obligate aerobic phototrophic bacteria Erythrobacter litoralis, Erythromonas ursincola and Sandaracinobacter sibiricus

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Reaction centers (RC) from the species Erythrobacter (Eb.) litoralis, Erythromonas (Em.) ursincola and Sandaracinobacter (S.) sibiricus have been purified by LDAO treatment of light-harvesting-reaction center complexes and DEAE chromatography. The content and overall organisation of the RCs' chromophores, determined by linear dichroism (LD) and absorption spectroscopy, are similar to those isolated from anaerobic photosynthetic bacteria. The redox properties of the primary electron donor are pH-independent and very similar to those determined for anaerobic photosynthetic bacteria with midpoint potential values equal to 445 (± 10), 475 and 510 mV for Eb. litoralis, S. sibiricus and Em. ursincola, respectively. The RC purified from Eb. litoralis does not contain bound cytochrome (cyt), whereas RCs isolated from S. sibiricus and Em. ursincola possess a tetraheme cyt c. Each of these tetraheme cyts contains two high potential hemes and two low potential hemes. Their redox properties are very similar, with midpoint potentials equal to 385 (± 10), 305, 40, -40 mV for Em. ursincola and 355, 285, 30, -48 mV for S. sibiricus. At physiological pH, the midpoint potential of the primary electron acceptor (QA) varies with a slope of -60 mV/pH unit. The reduced form of QA presents pK values of 9, 9.8, 10.5 for S. sibiricus, Em. ursincola and Eb. litoralis, respectively. The main difference observed between RCs isolated from anaerobic photosynthetic and from obligate aerobic bacteria is the Emvalues of QA which are 65 to 120 mV higher in the last case. This difference is proposed to be a major reason for the inability of these species to grow under anaerobic photosynthetic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agalidis I, Ivancich A, Mattioli TA and Reiss-Husson F (1997) Characterization of the Rhodocyclus tenuis reaction center. Biochim Biophys Acta 1321: 31–46

    Google Scholar 

  • Breton J (1974) Contribution à l'étude de l'orientation des pigments dans les membranes photosynthétiques par spectroscopie optique en lumière polarisée. PhD-thesis, Paris

  • Breton J (1985) Orientation of the chromophores in reaction center of Rhodopseudomonas viridis. Comparison of low temperature linear dichroism spectra with a model derived from X-ray crystallography. Biochim Biophys Acta 810: 235–245

    Google Scholar 

  • Evans ER, Fleischman DE, Calvert HE, Pyati PV, Alter g and Subba Rao NS (1990) Bacteriochlorophyll and photosynthetic reaction centers in Rhizobium strain BTAi1. Appl Environ Microbiol 56: 3445–3449

    Google Scholar 

  • Fuerst JA, Hawkins JA, Holmes A, Sly LI, Moore CI and Stackebrandt E (1993) Porphyrobacter neustonnensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-synthesizing budding bacterium from freshwater. Int J Syst Bacteriol 43: 125–134

    Google Scholar 

  • Harashima K and Takamiya KT (1989) Photosynthesis and photosynthetic appararus In: Harashima K, Shiba T and Murata H (eds) Aerobic Photosynthetic Bacteria, pp 39–72. Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • Harashima K, Shiba T, Totsuka T, Simidu U and Toga N (1978) Occurrence of bacteriochlorophyll a in a strain of an aerobic heterotrophic bacterium. Agric Biol Chem 42: 1627–1628

    Google Scholar 

  • Harashima K, Nagagawa M and Murata N (1982) Photochemical activity of bacteriochlorophyll in aerobically grown cells of heterotrophs, Erythrobacter species (OCh114) and Erythrobacter longus (OCh 101). Plant Cell Physiol 23: 185–193

    Google Scholar 

  • Harashima K, Kawazoe K, Yoshida I and Kamata H (1987) Lightstimulated aerobic growth of Erythrobacter species OCh114. Plant Cell Physiol 28: 365–374

    Google Scholar 

  • Ivancich A, Kobayashi M, Drepper F, Fathir I, Saito T, Nozawa T and Mattioli TA (1996) Hydrogen-bond interactions of the primary donor of the photosynthetic purple sulfur bacterium Chromatium tepidum. Biochemistry 35: 10529–10538

    Google Scholar 

  • Joliot P, Béal D and Frilley B (1980) Une nouvelle méthode spectrophotométrique destinée à l'étude des réactions photosynthétiques. J Chim Phys 77: 209–216

    Google Scholar 

  • Liebetanz R, Hornberger U and Drews G (1991) Organization of the genes coding for the reaction center L and M subunits and B870 antenna polypeptides α and β from the aerobic photosynthetic bacterium Erythrobacter sp. OCh114. Mol Microbiol 5: 1459–1468

    Google Scholar 

  • Mattioli TA, Lin X, Allen JP and Williams JC (1995) Correlation between multiple hydrogen bonding and alteration of the oxidation potential of the bacteriochlorophyll dimer of reaction centers from Rhodobacter sphaeroides. Biochemistry 34: 6142–6152

    Google Scholar 

  • Michel H, Epp O and Deisenhofer J (1986) Pigment-protein interactions in the photosynthetic reaction centre from Rhodopseudomonas viridis. EMBO J 5: 2445–2451

    Google Scholar 

  • Nishimura Y, Mukasa S, Iizuka H and Shimada K (1989) Isolation and characterization of bacteriochlorophyll-protein complexes from an aerobic bacterium, Pseudomonas radiora. Arch Microbiol 152: 1–5

    Google Scholar 

  • Nitschke W and Dracheva SM (1995) Reaction center associated cytochromes. In: Blankenshop RE, Madigan MT and Bauer CE (eds) Anoxygenic photosynthetic bacteria, pp 775–805. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Okamura K, Takamiya KT and Nishimura M (1985) Photosynthetic electron transfer system is inoperative in anaerobic cells of Erythrobacter species strain OCh114. Arch Microbiol 142: 12–17

    Google Scholar 

  • Okamura K, Mitsumori F, Ito O, Takamiya KT and Nishimura M (1986) Photophosphorylation and oxidative phosphorylation in intact cells and chromatophores of an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh114. J Bacteriol 168: 1142–1146

    Google Scholar 

  • Prince R and Dutton LP (1978) Protonation and the reducing potential of the primary electron acceptor. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria. Plenum Press, New York

    Google Scholar 

  • Shiba T and Simidu U (1982) Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol 32: 211–217

    Google Scholar 

  • Shiba T and Harashima K (1986) Aerobic photosynthetic bacteria. Microbiol Sci 3: 376–378

    Google Scholar 

  • Shiba T, Simidu U and Taga N (1979) Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl Environ Microbiol 38: 43–45

    Google Scholar 

  • Shiba T, Shioi Y, Takamiya KI, Sutton DC and Wilkinson CR (1991) Distribution and physiology of aerobic bacteria containing bacteriochlorophyll a on the East and West coasts of Australia. Appl Environ Microbiol 57: 295–300

    Google Scholar 

  • Shimada K (1995) Aerobic Anoxygenic phototrophs. In: Blankenshop RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 105–122. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Shimada K, Hayashi H and Tasumi M (1985) Bacteriochlorophyllprotein complexes of aerobic bacteria, Erythrobacter longus and Erythrobacter sp. OCh114. Arch Microbiol 143: 244–247

    Google Scholar 

  • Takamiya K and Okamura K (1984) Photochemical activities and photosynthetic ATP formation in membrane preparation from a facultative methylotroph, Protaminobacter ruber strain NR-1. Arch Microbiol 140: 21–26

    Google Scholar 

  • Takamiya K, Iba K and Okamura K (1987) Reaction center complex from an aerobic photosynthetic bacterium Erythrobacter species OCh114. Biochim Biophys Acta 890: 127–133

    Google Scholar 

  • Takamiya K, Arata H, Shioi Y and Doi M (1988) Restoration of the optimal redox state for the photosynthetic electron transfer system by auxiliary oxidants in an aerobic photosynthetic bacterium, Erythrobacter sp. Och 114. Biochim Biophys Acta 935: 6–33

    Google Scholar 

  • Tapie P, Haworth P, Hervo G and Breton J (1982) Orientation of the pigments in the thylakoid membrane and in the isolated chlorophyll–protein complexes of higher plants III: A quantitative comparison of the low-temperature linear dichroism spectra of thylakoids and isolated pigment–protein complexes. Biochim Biophys Acta 682: 339–344

    Google Scholar 

  • Thomas PE, Ryan D and Lewin W (1976) An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Analyt Biochem 75: 168–176

    Google Scholar 

  • Verméglio A and Clayton RK (1976) Orientation of chromophores in reaction centers of Rhodopseudomonas sphaeroides. Evidence for two absorption bands of the dimeric primary electron donor. Biochim Biophys Acta 449: 500–515

    Google Scholar 

  • Yurkov V and Gorlenko VM(1990) Erythrobacter sibiricus sp. nov., a new freshwater aerobic bacterial species containing bacteriochlorophyll a.Microbiology (Engl. Transl. Mikrobiologiya) 59: 85–89

    Google Scholar 

  • Yurkov V and Gorlenko VM (1992) A new genus of freshwater aerobic, bacteriochlorophyll a-containing bacteria, Roseococcus gen. nov. Microbiology (Engl. Transl. Mikrobiologiya) 60: 628–632

    Google Scholar 

  • Yurkov V and Gorlenko VM (1993) New species of aerobic bacteria from the genus Erythromicrobium containing bacteriochlorophyll a.Microbiology (Engl. Transl. Mikrobiologiya) 61: 163–168

    Google Scholar 

  • Yurkov V and Van Gemerden H (1993a) Impact of light/dark regime on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Arch Microbiol 159: 84–89

    Google Scholar 

  • Yurkov V and Van Gemerden H (1993b) Abundance and salt tolerance of obligately aerobic, phototrophic bacteria in a microbial mat. Neth J Sea Res 31: 57–62

    Google Scholar 

  • Yurkov V and Beatty JT (1998) Isolation of aerobic anoxygenic photosynthetic bacteria from black smoker plume waters of the Juan de Fuca Ridge in the Pacific Ocean. Appl Environ Microbiol 64: 337–341

    Google Scholar 

  • Yurkov V, Gad'on N, Angerhofer A and Drews G (1994) Lightharvesting complexes of aerobic bacteriochlorophyll-containing bacteria Roseococcus thiosulfatophilus, RB3 and Erythromicrobium ramosum, E5 and the transfer of excitation energy from carotenoids to bacteriochlorophyll. Z Naturforsch (in Engl.) 49(c): 579–586

    Google Scholar 

  • Yurkov V, Jappé J and A Verméglio (1996) Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria. Appl Environ Microbiol 62: 4195–4198

    Google Scholar 

  • Yurkov V, Stackebrandt E, Buss O, Verméglio A, Gorlenko V and Beatty JT (1997) Reorganization of the genus Erythromicrobium. Description of 'Erythromicrobium sibiricum' and 'Erythromicrobium ursincola' as members of two new independent genera: Sandaracinobacter andErythromonas. Int J Syst Bacteriol 47: 1172–1178

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yurkov, V., Menin, L., Schoepp, B. et al. Purification and characterization of reaction centers from the obligate aerobic phototrophic bacteria Erythrobacter litoralis, Erythromonas ursincola and Sandaracinobacter sibiricus. Photosynthesis Research 57, 129–138 (1998). https://doi.org/10.1023/A:1006087403692

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006087403692

Navigation