Skip to main content
Log in

Fibrinolytic activity in retinal vein occlusion

  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose: Impaired fibrinolytic function is a common finding in patients with thrombotic disease. The present study was initiated to evaluate the fibrinolytic response to a venous occlusion test (VOT) in patients with retinal vein occlusion. Methods: Euglobulin clot lysis time (ECLT), tissue plasminogen activator (t-PA) activity, and plasminogen activator inhibitor (PAI) activity were measured before and after VOT in a group of 26 consecutive patients presenting with retinal vein occlusion and in 15 healthy age- and sex-matched controls. Results: Before VOT (baseline), a higher proportion of patients (54%) had an ECLT of more than 5 h compared with controls (6.7%)(p = 0.0027) indicating decreased overall fibrinolytic activity. Patients had non-significantly lower t-PA and higher PAI activities compared with controls. After VOT, a higher proportion of patients (34.6%) had an ECLT of more than 5 h compared with controls (6.7%) (p = 0.05). Patients had significantly lower t-PA activity (p = 0.0232) and significantly higher PAI activity (p = 0.0292).Subgroup analysis revealed that patients with an ECLT of more than 5 h had significantly higher levels of PAI activity at baseline (p =0.0326) and after VOT (p = 0.0184) compared with patients with an ECLT of less than 5 hours. However, t-PA activity was significantly higher(p = 0.0153) at baseline, and non-significantly higher after VOT in patients with an ECLT of more than 5 h when compared with patients with an ECLT of less than 5 hours. Conclusions: These findings suggest that impaired fibrinolysis due to increased PAI activity may play a role in the pathogenesis of retinal vein occlusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green WR, Chan CC, Hutchins GH, Terry JM. Central retinal vein occlusion: a prospective histopathologic study of 29 eyes in 28 cases. Retina 1981; 1: 27–55.

    PubMed  CAS  Google Scholar 

  2. Frangieh GT, Green WR, Barraquer-Somers E, Finkelstein D. Histopathologic study of nine branch retinal vein occlusions. Arch Ophthalmol 1982; 100: 1132–40.

    PubMed  CAS  Google Scholar 

  3. Virchow R. Phlogose und Thrombose. In: Virchow R(ed) ‘Gesammelte Abhandlungen zur Wissenschaflichen Medizin’. Van Meidlinger Sohn, Frankfurt, pp 458–636, 1856.

    Google Scholar 

  4. Bick RL, Pegram M. Syndromes of hypercoagulability and thrombosis: a review. Semin Thromb Hemost 1994; 20: 109–32.

    PubMed  CAS  Google Scholar 

  5. Doig RG, O’Malley CJ, Dauer R, McGarth KM. An evaluation of 200 consecutive patients with spontaneous or recurrent thrombosis for primary hypercoagulable states. Am J Clin Pathol 1994; 102: 797–801.

    PubMed  CAS  Google Scholar 

  6. Wiman B. Plasminogen activator inhibitor 1 (PAI-1) in plasma: its role in thrombotic disease. Thromb Haemost 1995; 74: 71–6.

    PubMed  CAS  Google Scholar 

  7. Cash JD. Effect of moderate exercise on the fibrinolytic system in normal young men and women. Br Med J 1966; ii: 502–6.

    Google Scholar 

  8. Lijnen HR, Collen D. Review: congenital and acquired deficiencies of components of the fibrinolytic system and their relationship to bleeding and thrombosis. Fibrinolysis 1989; 3: 67–78.

    Article  CAS  Google Scholar 

  9. Aoki N. Fibrinolysis. Semin Thromb Haemost 1984; 10: 1–103.

    Google Scholar 

  10. Robertson BR, Pandolfi M, Nilsson IM. ‘Fibrinolytic capacity’ in healthy volunteers as estimated from effect of venous occlusion of arms. Acta Chir Scand 1972; 138: 429–36.

    PubMed  CAS  Google Scholar 

  11. Samama M. Hypofibrinolysis and venous thrombosis. In: Neri Serneri GG, Gensini GF, Abbate R, Prisco D (eds) ‘Thrombosis: an update’. Florence Scientific Press, pp 65–81, 1992.

  12. Holvoet P, Boes J, Collen D. Measurement of free, one-chain tissue-type plasminogen activator in human plasma and with an enzyme-linked immunosorbent assay based on an active site-specific murine monoclonal antibody. Blood 1987; 69: 284–9.

    PubMed  CAS  Google Scholar 

  13. Booth NA, Walker E, Maughan R, Bennett B. Plasminogen activator in normal subjects after exercise and venous occlusion: t-PA circulates as complexes with C1-inhibitor and PAI-1. Blood 1987; 69: 1600–4.

    PubMed  CAS  Google Scholar 

  14. Keber D, Blinc A, Fettich J. Increase of tissue plasminogen activator in limbs during venous occlusion: a simple haemodynamic model. Thromb Haemost 1990; 64: 433–7.

    PubMed  CAS  Google Scholar 

  15. Nilsson IM, Ljungnér H, Tengborn L. Two different mechanisms in patients with venous thrombosis and defective fibrinolysis: low concentration of plasminogen activator or increased concentration of plasminogen activator inhibitor. Br Med J 1985; 290: 1453–6.

    Article  CAS  Google Scholar 

  16. Juhan-Vague I, Valadier J, Alessi MC, Aillaud MF, Ansaldi J, Philip-Joet C, et al. Deficient t-PA release and elevated PA inhibitor levels in patients with spontaneous or recurrent deep venous thrombosis. Thromb Haemost 1987; 57: 67–72.

    PubMed  CAS  Google Scholar 

  17. Prins MH, Hirsh J. A critical review of the evidence supporting a relationship between impaired fibrinolytic activity and venous thromboembolism. Arch Intern Med 1991; 151: 1721–31.

    Article  PubMed  CAS  Google Scholar 

  18. Peduzzi M, De Rosa V, Fonda S, Coccheri S. Haemostatic studies in retinal vein occlusion. Fibrinolytic response to venostasis as a prognostic factor from spontaneous recanalization. Thromb Res 1981; 24: 105–18.

    Article  PubMed  CAS  Google Scholar 

  19. Williamson TH, Rumley A, Lowe GDO. Blood viscosity, coagulation, and activated protein C resistance in central vein occlusion: a population controlled study. Br J Ophthalmol 1996; 80: 203–8.

    PubMed  CAS  Google Scholar 

  20. Patrassi GM, Mares M, Piermarocchi S, Santarossa A, Viero M, Girolami A. Fibrinolytic behavior in long-standing branch retinal vein occlusion. Ophthalmic Res 1987; 19: 221–5.

    Article  PubMed  CAS  Google Scholar 

  21. Altman R, Scazziota A, Rouvier J, Gurfinkel E, Favaloro R, Perrone S, et al. Coagulation and fibrinolytic parameters in patients with pulmonary hypertension. Clin Cardiol 1996; 19: 549–54.

    Article  PubMed  CAS  Google Scholar 

  22. Wiman B, Hamsten A. Impaired fibrinolysis and risk of thromboembolism. Progr Cardiovasc Dis 1991; 34: 179–92.

    Article  CAS  Google Scholar 

  23. Eriksson B, Eriksson E, Gyzander E, Teger-Nillson AC, Thorsen S, Risberg B. Thrombosis after hip replacement, relationship to the fibronolytic system. Acta Orthop Scand 1989; 60: 159–63.

    Article  PubMed  CAS  Google Scholar 

  24. Cortellaro M, Cofrancesco E, Boscheti C, Mussoni L, Donati MB, Cardillo M, et al. Increased fibrin turnover and high PAI-1 activity as predictors of ischemic events in atherosclerotic patients–a case control study. Arterioscler Thromb 1993; 13: 1412–7.

    PubMed  CAS  Google Scholar 

  25. Aznar J, Estelles A, Tormo G, Sapena P, Tormo V, Blanch S, et al. Plasminogen activator inhibitor activity and other fibrinolytic variables in patients with coronary artery disease. Br Heart J 1988; 59: 535–41.

    PubMed  CAS  Google Scholar 

  26. Hamsten A, de Faire U, Walldius G, Dahlén G, Szamosi A, Landou C, et al. Plasminogen activator in plasma: risk for recurrent myocardial infarction. Lancet 1987; 2: 3–9.

    Article  PubMed  CAS  Google Scholar 

  27. Hamsten A, Wiman B, de Faire U, Blombäck M. Increased plasma levels of a rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction. N Engl J Med 1985; 313: 1557–63.

    Article  PubMed  CAS  Google Scholar 

  28. Olofsson BO, Dahle[SS]jn G, Nilsson TK. Evidence for increased levels of plasminogen activator inhibitor and tissue plasminogen activator in plasma of patients with angiographically verified coronary artery disease. Eur Heart J 1989; 10: 77–82.

    PubMed  CAS  Google Scholar 

  29. Gleerup G, Vind J, Winther K. Platelet function and fibrinolytic activity during rest and exercise in borderline hypertensive patients. Eur J Clin Invest 1995; 25: 266–70.

    Article  PubMed  CAS  Google Scholar 

  30. Winther K, Gleerup G, Hedner T. Platelet function and fibrinolytic activity in hypertension: differential effects of calcium antagonists and beta-adrenergic receptor blockers. J Cardiovasc Pharmacol 1991; 18 (suppl): S41–4.

    PubMed  Google Scholar 

  31. Mansfield MW, Grant PJ. Fibrinolysis and diabetic retinopathy in NIDDM. Diabetes Care 1995; 18: 1577–81.

    PubMed  CAS  Google Scholar 

  32. Takada Y, Urano T, Watanabe I, Taminato A, Yoshimi T, Takada A. Changes in fibrinolytic parameters in male patients with type 2 (non-insulin-dependent) diabetes mellitus. Thromb Res 1993; 75–15.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Asrar, A.M.A., Abdel Gader, A.G.M., Al-Amro, S. et al. Fibrinolytic activity in retinal vein occlusion. Int Ophthalmol 21, 343–348 (1997). https://doi.org/10.1023/A:1006075815099

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006075815099

Navigation