Skip to main content
Log in

The Central Limit Theorem in Texture Component Fit Methods

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

This note is concerned with implications of spherical analogues of the central limit theorem of probability in Euclidean space. In particular, it is concerned with the presumption that the analogy holds in terms of interpreting a special spherical limiting distribution, the hyperspherical Brownian distribution, as the distribution of the resultant rotation composed by a sequence of successive random rotations under similarly mild assumptions as applied in the central limit theorem for Euclidean space. This interpretation has been stressed at several instances to indicate the superiority of the spherical Brownian distribution for applications in texture component fit methods. Here it is shown, however, that this presumption is false. Thus, an explicit correspondence of the Brownian form of texture components and processes causing preferred crystallographic orientations cannot be inferred from a central limit type argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, B. L., Dingley, D. J., Kunze, K. and Wright, S. I.: 1994, Orientation imaging microscopy: New possibilities for microstructural investigations using automated bkd analysis, in: H. J. Bunge (ed.), Proc. 10th Internat. Conf. Textures of Materials, Materials Science Forum, pp. 157-162, 31-42.

  • Altmann, S. L.: 1986, Rotations, Quaternions, and Double Groups, Oxford University Press, Oxford.

    Google Scholar 

  • Anderson, T. W.: 1984, An Introduction to Multivariate Statistical Analysis, 2nd edn, Wiley, New York.

    Google Scholar 

  • Arnold, K. J.: 1941, On spherical probability distributions, PhD thesis, Massachusetts Institute of Technology, MA, U.S.A.

  • Beran, R. J.: 1979, Exponential models for directional data, Ann. Statist. 7, 1162-1178.

    Google Scholar 

  • Billingsley, P.: 1968, Convergence of Probability Measures, Wiley, New York.

    Google Scholar 

  • Bingham, N. H.: 1972, Random walk on spheres, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 22, 169-192.

    Google Scholar 

  • Breitenberger, E.: 1963, Analogues of the normal distribution on the circle and the sphere, Biometrika 50, 81-88.

    Google Scholar 

  • Bucharova, T. I. and Savyolova, T. I.: 1993, Application of normal distribution on SO(3) and S nfor orientation distribution function approximation, Textures and Microstructures 21, 161-176.

    Google Scholar 

  • Bukharova [identical with Bucharova], T. I., Kapcherin, A. S., Nikolayev, D. I., Papirov, I. I., Savyolova, T. I. and Shkuropatenko, V. A.: 1988, A new method of reconstructing the grain orientation distribution function - Axial texture, Phys. Met. Metal. 65, 94-99.

    Google Scholar 

  • Bunge, H. J.: 1969, Mathematische Methoden der Texturanalyse, Akademie-Verlag, Berlin.

    Google Scholar 

  • Bunge, H. J. (trans. P. R. Morris): 1982, Texture Analysis in Materials Science, Butterworths, London.

    Google Scholar 

  • Butzer, P. L. and Nessel, R. J.: 1971, Fourier Analysis and Approximation, Birkhäuser, Basel, Stuttgart.

    Google Scholar 

  • Dubrovin, B. A., Fomenko, A. T. and Novikov, S. P.: 1984, Modern Geometry Methods and Applications, Springer-Verlag, New York.

    Google Scholar 

  • Eschner, T.: 1993, Texture analysis by means of model functions, Textures and Microstructures 21, 139-146.

    Google Scholar 

  • Eschner, T.: 1994, Generalized model function for quantitative texture analysis: in H. J. Bunge, S. Siegesmund, W. Skrotzki and K. Weber (eds), Textures of Geological Materials, DGM Informationsgesellschaft, Oberursel, to appear.

    Google Scholar 

  • Eschner, T.: 1995, Quantitative Texturanalye durch Komponentenzerlegung von Beugungspolfiguren, Laborbericht PTB-7.4-95-1, Physikalisch-Technische Bundesanstalt, Braunschweig.

    Google Scholar 

  • deHaas-Lorentz, G. L.: 1913, Die Brownsche Bewegung und einige verwandte Erscheinungen, Friedr. Vieweg Brunswick.

  • Gelfand, I. M., Minlos, R. A. and Shapiro, Z. Ya.: 1963, Representations of the Rotation and Lorentz Groups and Their Applications, Macmillan, New York.

    Google Scholar 

  • Grenander, U.: 1963, Probabilities on Algebraic Structures, Wiley, New York.

    Google Scholar 

  • Hartman, P. and Watson, G. S.: 1974, 'Normal' distribution functions on spheres and the modified Bessel functions, Ann. Probab. 2, 593-607.

    Google Scholar 

  • Helming, K.: 1995, Texturapproximation durch Modellkomponenten, Habilitationsschrift, TU Clausthal.

  • Helming, K. and Eschner, T.: 1990, A new approach to texture analysis of multiphase materials using a texture component model, Crystal. Res. Technol. 25, K203-K208.

    Google Scholar 

  • Hetherington, T. J.: 1981, Analysis of directional data by exponential models, PhD Thesis, University of California, Berkeley, U.S.A.

  • Heyer, H.: 1977, Probability Measures on Locally Compact Groups, Springer-Verlag, Berlin.

    Google Scholar 

  • Ibragimov, I. A. and Linnik, Yu. V.: 1971, Independent and Stationary Sequences of Random Variables, Wolters-Nordhoff, Groningen.

    Google Scholar 

  • James, A. T.: 1954, Normal multivariate analysis and the orthogonal group, Ann. Math. Statist. 25, 40-75.

    Google Scholar 

  • Jupp, P. E. and Mardia, K. V.: 1989, A unified view of the theory of directional statistics 1979-1989, Int. Stat. Rev. 57, 261-294.

    Google Scholar 

  • Kent, J. T.: 1977, The infinite divisibility of the von Mises-Fisher distribution for all values of the parameter in all dimensions, Proc. London Math. Soc. 35, 359-384.

    Google Scholar 

  • Kent, J. T.: 1995, pers. comm.

  • Khatri, C. G. and Mardia, K. V.: 1977, The von Mises-Fisher matrix distribution in orientation statistics, J. Roy. Statist. Soc., Ser. B 39, 95-106.

    Google Scholar 

  • Korn, G. A. and Korn, T. M.: 1968, Mathematical Handbook for Scientists and Engineers. Definitions, Theorems and Formulas for Reference and Review, McGraw-Hill, New York.

    Google Scholar 

  • Kunze, K., Heidelbach, S., Wenk, H.-R. and Adams, B. L.: 1994, Orientation imaging microscopy of calcite rocks, in: H. J., Bunge, S., Siegesmund, W. Skrotzki and K. Weber (eds), Textures of Geological Materials, DGM Informationsgesellschaft, Oberursel, pp. 127-146.

    Google Scholar 

  • Mardia, K. V.: 1972, Statistics of Directional Data, Academic Press, New York.

    Google Scholar 

  • Mardia, K. V.: 1974, Characterizations of directional distributions, in: G. P., Patil, S. Kotz and J. K. Ord (eds), Statistical Distributions in Scientific Work, vol. 3(D. Reidel, Dordrecht), pp. 365-385.

    Google Scholar 

  • Matthies, S.: 1982, Form effects in the description of the orientation distribution function (odf) of texturized materials by model components, Phys. Stat. Sol. b 112, 705-716.

    Google Scholar 

  • Matthies, S., Vinel, G. W. and Helming, K.: 1987, 1988, 1990, Standard Distributions in Texture Analysis I, II, III, Akademie-Verlag, Berlin.

    Google Scholar 

  • Matthies, S., Muller, J., and Vinel, G. W.: 1988, On the normal distribution in orientation space, Textures and Microstructures 10, 77-96.

    Google Scholar 

  • Nikolayev, D. I., Savyolova, T. I. and Feldmann, K.: 1992, Approximation of the orientation distribution of grains in polycrystalline samples by means of Gaussians, Textures and Microstructures 19, 9-27.

    Google Scholar 

  • Nikolayev, D. I. and Savyolova, T. I.: 1996, Normal distributions on the rotation group SO(3), Textures and Microstructures, in press.

  • Parthasarathy, K. R.: 1964, The central limit theorem for the rotation group, Theory Probab. Appl. 9, 248-257.

    Google Scholar 

  • Parthasarathy, K. R.: 1967, Probability Measures on Metric Spaces, Academic Press, New York.

    Google Scholar 

  • Parthasarathy, K. R.: 1995, pers. comm.

  • Perrin, F.: 1928, Etude mathematique du mouvement Brownien de rotation, Ann. Sci. Ecole Norm. Sup. 45, 1-51.

    Google Scholar 

  • Roberts, P. H. and Ursell, H. D.: 1960, Random walk on a sphere and on a Riemannian manifold, Philos. Trans. Roy. Soc. London, Ser A 252, 317-356.

    Google Scholar 

  • Roberts, P. H. and Winch, D. E.: 1984, On random rotations, Adv. Appl. Prob. 16, 638-655.

    Google Scholar 

  • Savelova [identical with Savyolova], T. I.: 1984, Distribution functions of grains with respect to orientation in polycrystals and their Gaussian approximations, Industrial Laboratory 50, 468-474; translated from Zavodskaya Laboratoriya 50, 48-52.

    Google Scholar 

  • Savelova [identical with Savyolova], T. I.: 1989, Computing polar figures and deriving orientation distributions from them for canonical Gaussian distributions, Industrial Laboratory 55, 1045-1048; translated from Zavodskaya Laboratoriya 55, 57-60.

    Google Scholar 

  • Savyolova, T. I.: 1993, Approximation of the pole figures and the orientation distribution of grains in polycrystalline samples by means of canonical normal distributions, Textures and Microstructures 22, 17-28.

    Google Scholar 

  • Savyolova, T. I.: 1995, A normal distribution for texture investigations, Textures and Microstructures, to appear.

  • Saw, J. G.: 1984, Ultraspherical polynomials and statistics on the m-sphere, J. Multivariate Anal. 14, 105-113.

    Google Scholar 

  • Schaeben, H.: 1992, 'Normal' orientation distributions, Textures and Microstructures 19, 197-202.

    Google Scholar 

  • Schaeben, H.: 1996a, A unified view of methods to resolve the inverse problem of texture goniometry, in: T. I., Savyolova, D. I. Nikolayev, H., Schaeben, and H. J. Bunge (eds), Proc. Workshop on Mathematical Methods of Texture Analysis, Special Issue Textures and Microstructures 25, 171- 181.

  • Schaeben, H.: 1996b, Resolving the inverse problem of texture goniometry, submitted to Inverse Problems.

  • Schaeben, H.: 1996c, Texture modeling or texture approximation with components represented by the von Mises-Fisher matrix distribution on SO(3) and the Bingham distribution on S 4 +, J. Appl. Crystall. 29, 516-525.

    Google Scholar 

  • Schaeben, H.: 1997, A simple standard orientation density function: The hyperspherical de la Vallée Poussin kernel, Phys. Stat. Sol. b 200, 367-376.

    Google Scholar 

  • Vilenkin, N. Ia.: 1968, Special Functions and the Theory of Group Representations, Amer. Math. Soc., Providence.

    Google Scholar 

  • Watson, G. S.: 1982, Distributions on the circle and the sphere, in: Essay in Statistical Science, Applied Probability Trust, J. Appl. Prob.special volume 19A, pp. 265-280.

    Google Scholar 

  • Watson, G. S.: 1983, Statistics on Spheres, Wiley, New York.

    Google Scholar 

  • Watson, G. S.: 1992, pers. comm.

  • Wehn, D.: 1962, Probability on Lie groups, Proc. Natl. Acad. Sci. 48, 791-795.

    Google Scholar 

  • Yosida, K.: 1949, Brownian motion on the surface of the 3-sphere, Ann. Math. Statist. 20, 292-296.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaeben, H., Nikolayev, D.I. The Central Limit Theorem in Texture Component Fit Methods. Acta Applicandae Mathematicae 53, 59–87 (1998). https://doi.org/10.1023/A:1005979525038

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005979525038

Navigation