Skip to main content
Log in

On Using Monte Carlo Simulations for Sampling Crystallite Orientations from Given Texture Data

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

An approach based on Monte Carlo simulations for sampling crystallite orientations from known texture data is developed. A randomized algorithm is proposed to reconstruct the orientation distribution function by a given set of pole densities. The algorithm fills up the orientation space with lots of uniformly distributed points and tries to evaluate the reconstructable function specifically at these points. This leads to a sparse quadratic programming problem, which is a discrete statistical analogue of the fundamental equation of Texture Analysis. The resulted distribution is represented as a weighted sample of orientations, with the weights equal to the reconstructed distribution function values. By means of randomized weight-based selections, such a sample can be reduced to an unweighted one with appropriately distributed orientations. A theoretical substantiation of the methods is presented in the paper in the weak probabilistic sense. Several examples of practical applications are provided as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. L. Anand, ‘‘Single-crystal elasto-viscoplasticity: Application to texture evolution in polycrystalline metals at large strains,’’ Comput. Methods Appl. Mech. Eng. 193, 5359–5383 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  2. D. L. McDowell and G. B. Olson, ‘‘Concurrent design of hierarchical materials and structures,’’ Lect. Notes Comput. Sci. Eng. 68, 207–240 (2008).

  3. P. van Houtte, ‘‘Crystal plasticity based modelling of deformation textures,’’ in Microstructure and Texture in Steels (Springer, Berlin, 2009), pp. 209–224.

    Google Scholar 

  4. F. Roters, P. Eisenlohr, L. Hantcherli, D. D. Tjahjanto, T. R. Bieler, and D. Raabe, ‘‘Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications,’’ Acta Mater. 58, 1152–1211 (2010).

    Article  Google Scholar 

  5. P. V. Trusov and A. I. Shveykin, Multilevel Models of Mono- and Polycrystalline Materials: Theory, Algorithms, Application Examples (SO RAN, Novosibirsk, Russia, 2019) [in Russian].

    Google Scholar 

  6. L. Devroye, Non-Uniform Random Variate Generation (Springer, New York, NY, 1986).

    Book  MATH  Google Scholar 

  7. H. J. Bunge, Texture Analysis in Materials Science (Butterworth-Heinemann, London, 1982).

    Google Scholar 

  8. A. Morawiec, Orientations and Rotations. Computations in Crystallographic Textures (Springer, Berlin, 2004).

    Book  MATH  Google Scholar 

  9. D. Chateigner, Combined Analysis (ISTE, London, 2013).

    Book  Google Scholar 

  10. S. Suwas and R. K. Ray, Crystallographic Texture of Materials (Springer, London, 2014).

    Book  Google Scholar 

  11. C. Esling, E. Bechlerferry, and H. J. Bunge, ‘‘Numerical calculation of the odd part of the texture function,’’ J. Phys. Lett. 42, 141–144 (1981).

    Article  Google Scholar 

  12. H. P. Van, ‘‘The use of a quadratic form for the determination of nonnegative texture functions,’’ Textures Microstruct. 6, 1–19 (1983).

    Article  Google Scholar 

  13. M. Dahms and H. J. Bunge, ‘‘A positivity method for the determination of complete orientation distribution functions,’’ Textures Microstruct. 10, 21–35 (1988).

    Article  Google Scholar 

  14. F. Wang, J. Z. Xu, and Z. D. Liang, ‘‘Determination of the ODF of hexagonal symmetry materials according to the maximum-entropy method,’’ Textures Microstruct. 10, 217–226 (1989).

    Article  Google Scholar 

  15. F. Wang, J. Z. Xu, and Z. D. Liang, ‘‘Determination of the complete ODF of cubic system materials by the maximum-entropy method,’’ Textures Microstruct. 19, 55–58 (1992).

    Article  Google Scholar 

  16. H. Schaeben and H. Siemes, ‘‘Determination and interpretation of preferred orientation with texture goniometry: An application of indicators to maximum entropy pole- to orientation density inversion,’’ Math. Geol. 28, 169–201 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Lucke, J. Pospiech, J. Jura, and J. Hirsch, ‘‘On the presentation of orientation distribution functions by model functions,’’ Z. Metall. 77, 312–321 (1986).

    Google Scholar 

  18. K. Helming and T. Eschner, ‘‘A new approach to texture analysis of multiphase materials using a texture component model,’’ Cryst. Res. Technol. 25, 203–208 (1990).

    Article  Google Scholar 

  19. T. Eschner and J. J. Fundenberger, ‘‘Application of anisotropic texture components,’’ Textures Microstruct. 28, 181–195 (1997).

    Article  Google Scholar 

  20. T. M. Ivanova, T. I. Savyolova, and M. V. Sypchenko, ‘‘The modified component method for calculation of orientation distribution function from pole figures,’’ Inverse Probl. Sci. Eng. 18, 163–171 (2010).

    Article  MATH  Google Scholar 

  21. L. K. Jetter, C. J. McHargue, and R. O. Williams, ‘‘Method of representing preferred orientation data analysis,’’ J. Appl. Phys. 27, 368–374 (1956).

    Article  Google Scholar 

  22. R. O. Williams, ‘‘Analytical methods for representing complex textures by biaxial pole figures,’’ J. Appl. Phys. 39, 4329–4335 (1968).

    Article  Google Scholar 

  23. J. Imhof, ‘‘Determination of an approximation of orientation distribution function using one pole figure,’’ Z. Metall. 68, 38–43 (1977).

    Google Scholar 

  24. S. Matthies and G. W. Vinel, ‘‘On the reproduction of the orientation distribution function of texturized samples from reduced pole figures using the conception of a conditional ghost correction,’’ Phys. Status Solidi B 122, K111–K114 (1982).

    Article  Google Scholar 

  25. S. Matthies and G. W. Vinel, ‘‘An example demonstrating a new reproduction method of the ODF of texturized samples from reduced pole figures,’’ Phys. Status Solidi B 112, 115–120 (1982).

    Article  Google Scholar 

  26. D. Ruer and R. Baro, ‘‘Vectorial method of texture analysis of cubic lattice polycrystalline material,’’ J. Appl. Crystallogr. 10, 458–464 (1977).

    Article  Google Scholar 

  27. A. Vadon and J. J. Heizmann, ‘‘A new program to calculate the texture vector for the vector method,’’ Textures Microstruct. 14, 37–44 (1991).

    Article  Google Scholar 

  28. K. Pawlik, J. Pospiech, and K. Lucke ‘‘The ODF approximation from pole figures with the aid of the ADC method,’’ Textures Microstruct. 14, 25–30 (1991).

    Article  Google Scholar 

  29. J. Tarasiuk, K. Wierzbanowski, and A. Baczmanski, ‘‘New algorithm of direct method of texture analysis,’’ Cryst. Res. Technol. 33, 101–118 (1998).

    Article  Google Scholar 

  30. D. P. Kroese, T. Taimre, and I. B. Zdravko, Handbook of Monte Carlo Methods (Wiley, New York, 2011).

    Book  MATH  Google Scholar 

  31. P. R. Halmos, Measure Theory (Springer, New York, NY, 1974).

    MATH  Google Scholar 

  32. M. Reed and B. Simon, Methods of Modern Mathematical Physics. I: Functional Analysis, 1st ed. (Academic, Cambridge, MA, 1980).

    MATH  Google Scholar 

  33. P. Billingsley, Probability and Measure (Wiley, New York, 1995).

    MATH  Google Scholar 

  34. J. H. Radon, ‘‘On the determination of functions from their integral values along certain manifolds,’’ IEEE Trans. Med. Imaging 5 (4), 170–176 (1986).

    Article  Google Scholar 

  35. H. Schaeben and K. G. van den Boogaart, ‘‘Spherical harmonics in texture analysis,’’ Tectonophysics 370, 253–268 (2003).

    Article  Google Scholar 

  36. K. Kunze and H. Schaeben, ‘‘The Bingham distribution of quaternions and its spherical radon transform in texture analysis,’’ Math. Geol. 36, 917–943 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  37. A. N. Tikhonov and V. Ya. Arsenin, Methods of Solution of Ill-Posed Problems (Nauka, Moscow, 1979) [in Russian].

    MATH  Google Scholar 

  38. M. J. J. Evans and J. S. Rosenthal, Probability and Statistics: The Science of Uncertainty (W. H. Freeman, San Francisco, 2009).

    MATH  Google Scholar 

  39. A. Kumar and P. R. Dawson, ‘‘Modeling crystallographic texture evolution with finite elements over neo-Eulerian orientation spaces,’’ Comput. Methods Appl. Mech. Eng. 153, 259–302 (1998).

    Article  MATH  Google Scholar 

  40. A. Heinz and P. Neumann, ‘‘Representation of orientation and disorientation data for cubic, hexagonal, tetragonal and orthorhombic crystals,’’ Acta Crystallogr., A 47, 780–789 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  41. H. Weyl, The Classical Groups: Their Invariants and Representations, 2nd ed. (Princeton Univ. Press, Princeton, NJ, 1966).

    MATH  Google Scholar 

  42. Mingyan Sun, Qichao Fan, Yingying Wang, Qin Yang, Jie Chen, Shuke Huang, and Yonghao Zhang, ‘‘111<110> orientation induced anisotropy of shape memory effect in NiTiNb pipe joints,’’ Metals 10, 776 (2020).

    Article  Google Scholar 

Download references

Funding

This study was carried out with a financial support from the Ministry of Education and Science of the Russian Federation (the basic part of the PNRPU state assignment, project no. FSNM-2020-0027) and the Russian Foundation for Basic Research and Perm Territory (project no. 20-41-596002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. V. Ostapovich or P. V. Trusov.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostapovich, K.V., Trusov, P.V. On Using Monte Carlo Simulations for Sampling Crystallite Orientations from Given Texture Data. Lobachevskii J Math 43, 1962–1975 (2022). https://doi.org/10.1134/S1995080222100328

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222100328

Keywords:

Navigation