Skip to main content
Log in

Conserved Ser residues in the basic region of the bZIP-type transcription factor HBP-1a(17): importance in DNA binding and possible targets for phosphorylation

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

HBP-1a(17) is representative of a group of plant bZIP-type transcription factors which includes HBP-1a proteins and G-box-binding factors. We found kinase activity in wheat nuclear extract that phosphorylated HBP-1a(17). Experiments using recombinant HBP-1a(17) derivatives as substrates revealed that all three of the Ser residues in the basic region, Ser-261, Ser-265, and Ser-269, were phosphorylated in a Ca2+-stimulated manner. DNA-binding analysis of mutants with a Ser-to-Glu change, prepared to mimic the phosphorylated proteins, indicated that introduction of a negative charge at position 265 or 269 prevents HBP-1a(17) from binding DNA not only in the homodimer of mutants but also in heterodimers with a wild-type protein. It is therefore suggested that the phosphorylation regulates the function of HBP-1a(17) at least at the level of DNA binding. Since Ser-265 and Ser-269 are highly conserved among the plant bZIP-type factors known to date, a common Ca2+-mediated regulatory mechanism may exert an effect on the bZIP-type factors through phosphorylation of these conserved Ser residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abate C, Patel L, Rauscher III FJ, Curran T: Redox regulation of Fos and Jun DNA-binding activity in vitro. Science 249: 1157–1161 (1990).

    PubMed  Google Scholar 

  2. Aeschbacher RA, Schrott M, Potrykus I, Saul MW: Isolation and molecular characterization of PosF21, an Arabidopsis thaliana gene which shows characteristics of a b-Zip class transcription factor. Plant J 1: 303–316 (1991).

    Google Scholar 

  3. Arias JA, Dixon RA, Lamb CJ: Dissection of the functional architecture of a plant defense gene promoter using a homologous in vitro transcription initiation system. Plant Cell 5: 485–496 (1993).

    Article  PubMed  Google Scholar 

  4. Boyle WJ, van der Geer P, Hunter T: Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Meth Enzymol 201: 110–149 (1991).

    Google Scholar 

  5. Braam J: Regulated expression of the calmodulin-related TCH genes in cultured Arabidopsis cells: induction by calcium and heat shock. Proc Natl Acad Sci USA 89: 3213–3216 (1992).

    PubMed  Google Scholar 

  6. Bush DS: Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol 46: 95–122 (1995).

    Article  Google Scholar 

  7. Ciceri P, Gianazza E, Lazzari B, Lippoli G, Genga A, Hoschek G, Schmidt RJ, Viotti A: Phosphorylation of Opaque2 changes diurnally and impacts its DNA binding activity. Plant Cell 9: 97–108 (1997).

    PubMed  Google Scholar 

  8. de Vetten NC, Ferl RJ: Transcriptional regulation of environmentally inducible genes in plants by an evolutionary conserved family of G-box binding factors. Int J Biochem 26: 1055–1068 (1994).

    PubMed  Google Scholar 

  9. Després C, Subramaniam R, Matton DP, Brisson N: The activation of the potato PR-10a gene requires the phosphorylation of the nuclear factor PBF-1. Plant Cell 7: 589–598 (1995).

    PubMed  Google Scholar 

  10. Donald RGK, Cashmore AR: Mutation of either Gbox or I box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter. EMBO J 9: 1717–1726 (1990).

    PubMed  Google Scholar 

  11. Ellenberger TE, Brandl CJ, Struhl K, Harrison SC: The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α-helices: crystal structure of the protein-DNAcomplex. Cell 71: 1223–1237 (1992).

    PubMed  Google Scholar 

  12. Eyal Y, Meller Y, Lev-Yadun S, Fluhr R: A basic-type PR-1 promoter directs ethylene responsiveness, vascular and abscission zone-specific expression. Plant J 4: 225–234 (1993).

    Article  PubMed  Google Scholar 

  13. Fabiato A: Computer programs for calculating total from specified free and free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Meth Enzymol 157: 378–417 (1988).

    PubMed  Google Scholar 

  14. Foster R, Izawa T, Chua N-H: Plant bZIP proteins gather at ACGT elements. FASEB J 8: 192–200 (1994).

    PubMed  Google Scholar 

  15. Glover JNM, Harrison SC: Crystal structure of the heterodimeric bZIP transcription factor c-Fos–c-Jun bound to DNA. Nature 373: 257–261 (1995).

    PubMed  Google Scholar 

  16. Guarente L, Mason T: Heme regulates transcription of the CYC1 gene of S. cerevisiae via an upstream activation site. Cell 32: 1279–1286 (1983).

    PubMed  Google Scholar 

  17. Guarente L, Ptashne M: Fusion of Escherichia coli lacZ to the cytochrome c gene of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 78: 2199–2203 (1981).

    PubMed  Google Scholar 

  18. Guiltinan MJ, Marcotte WR Jr, Quatrano RS: A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250: 267–271 (1990).

    PubMed  Google Scholar 

  19. Harter K, Kircher S, Frohnmeyer H, Krenz M, Nagy F, Schäfer E: Light-regulated modification and nuclear translocation of cytosolic G-box binding factors in parsley. Plant Cell 6: 545–559 (1994).

    PubMed  Google Scholar 

  20. Hong JC, Cheong YH, Nagao RT, Bahk JD, Key JL, Cho MJ: Isolation of two soybean G-box binding factors which interact with a G-box sequence of an auxin-responsive gene. Plant J 8: 199–211 (1995).

    PubMed  Google Scholar 

  21. Hunter T: Protein kinases and phosphatases: the Yin and Yang of protein phosphorylation and signaling. Cell 80: 225–236 (1995).

    Article  PubMed  Google Scholar 

  22. Hunter T, Karin M: The regulation of transcription by phosphorylation. Cell 70: 375–387 (1992).

    PubMed  Google Scholar 

  23. Ito H, Fukuda Y, Murata K, Kimura A: Transformation of intact yeast cells treated with alkaline cations. J Bact 153: 163–168 (1983).

    PubMed  Google Scholar 

  24. Iwabuchi M, Nakayama T, Meshi T: Transcriptional control of histone genes. In: Francis D, Dudits D, Inzé D (eds) Plant Cell Division. Portland Press, London (1997).

    Google Scholar 

  25. Katagiri F, Lam E, Chua N-H: Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature 340: 727–730 (1989).

    Article  PubMed  Google Scholar 

  26. Klimczak LJ, Collinge MA, Farini D, Giuliano G, Walker JC, Cashmore AR: Reconstitution of Arabidopsis casein kinase II from recombinant subunits and phosphorylation of transcription factor GBF1. Plant Cell 7: 105–115 (1995).

    PubMed  Google Scholar 

  27. Klimczak LJ, Schindler U, Cashmore AR: DNA binding activity of the Arabidopsis G-box binding factor GBF1 is stimulated by phosphorylation by casein kinase II from broccoli. Plant Cell 4: 87–98 (1992).

    Google Scholar 

  28. Kusano T, Berberich T, Harada M, Suzuki N, Sugawara K: A maize DNA-binding factor with a bZIP motif is induced by low temperature. Mol Gen Genet 248: 507–517 (1995).

    PubMed  Google Scholar 

  29. Lam E: Analysis of tissue-specific elements in CaMV 35S promoter. Results Probl Cell Differ 20: 181–196 (1994).

    PubMed  Google Scholar 

  30. Li H, Dauwalder M, Roux SJ: Partial purification and characterization of a Ca2+-dependent protein kinase from pea nuclei. Plant Physiol 96: 720–727 (1991).

    PubMed  Google Scholar 

  31. Mason HS, DeWald DB, Mullet JE: Identification of a methyl jasmonate-responsive domain in the soybean vspB promoter. Plant Cell 5: 241–251 (1993).

    Article  PubMed  Google Scholar 

  32. McKendree Jr. WL, Ferl RJ: Functional elements of the Arabidopsis Adh promoter include the G-box. Plant Mol Biol 19: 859–862 (1992).

    PubMed  Google Scholar 

  33. Menkens AE, Schindler U, Cashmore AR: The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends Biochem Sci 20: 506–510 (1995).

    Article  PubMed  Google Scholar 

  34. Meshi T, Hosokawa D, Kawagishi M, Watanabe Y, Okada Y: Reinvestigation of intracellular localization of the 30K protein in tobacco protoplasts infectedwith tobaccomosaic virusRNA. Virology 187: 809–813 (1992).

    PubMed  Google Scholar 

  35. Meshi T, Iwabuchi M: Plant transcription factors. Plant Cell Physiol 36: 1405–1420 (1995).

    PubMed  Google Scholar 

  36. Mikami K, Sakamoto A, Iwabuchi M: The HBP-1 family of wheat basic/leucine zipper proteins interacts with overlapping cis-acting hexamer motifs of plant histone genes. J Biol Chem 269: 9974–9985 (1994).

    PubMed  Google Scholar 

  37. Minami M, Huh GH, Yang P, Iwabuchi M: Coordinate gene expression of five subclass histones and the putative transcription factors, HBP-1a and HBP-1b, of histone genes in wheat. Plant Mol Biol 23: 429–434 (1993).

    PubMed  Google Scholar 

  38. Nakayama T, Iwabuchi M: Regulation of wheat histone H3 gene expression. Crit Rev Plant Sci 12: 97–110 (1993).

    Google Scholar 

  39. Nakayama T, Okanami M, Meshi T, Iwabuchi M: Dissection of the wheat transcription factor HBP-1a(17) revealed the modular structure of the activation domain. Mol Gen Genet 253: 553–561 (1997).

    PubMed  Google Scholar 

  40. Nakayama T, Sakamoto A, Yang P, Minami M, Fujimoto Y, Ito T, Iwabuchi M: Highly conserved hexamer, octamer and nonamer motifs are positive cis-regulatory elements of the wheat histone H3 gene. FEBS Lett 300: 167–170 (1992).

    Article  PubMed  Google Scholar 

  41. Nantel A, Quatrano R: Characterization of three rice basic/leucine zipper factors, including two inhibitors of EmBP-1 DNA binding activity. J Biol Chem 271: 31296–31305 (1996).

    PubMed  Google Scholar 

  42. Neuhaus G, Bowler C, Kern R, Chua N-H: Calcium/ calmodulin-dependent and-independent phytochrome signal transduction pathways. Cell 73: 937–952 (1993).

    Article  PubMed  Google Scholar 

  43. Ohtsubo N, Nakayama T, Kaya H, Terada R, Shimamoto K, Meshi T, Iwabuchi M: Cooperation of two distinct cis-acting elements is necessary for the S phase-specific activation of the wheat histone H3 promoter. Plant J 11: 1219–1225 (1997).

    Google Scholar 

  44. Okanami M, Meshi T, Tamai H, Iwabuchi M: HALF1, a bZIPtype protein, interacting with the wheat transcription factor HBP-1a contains a novel transcriptional activation domain. Genes Cells 1: 87–99 (1996).

    PubMed  Google Scholar 

  45. Pabo CO, Sauer RT: Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem 61: 1053–1095 (1992).

    Google Scholar 

  46. Patil S, Takezawa D, Poovaiah BW: Chimeric plant calcium/calmodulin-dependent protein kinase gene with a neural visinin-like calcium-binding domain. Proc Natl Acad Sci USA 92: 4897–4901 (1995).

    PubMed  Google Scholar 

  47. Polya GM, Davies JR, Micucci V: Properties of a calmodulinactivated Ca2+-dependent protein kinase from wheat germ. Biochim Biophys Acta 761: 1–12 (1983).

    PubMed  Google Scholar 

  48. Poovaiah BW, Reddy ASN: Calcium and signal transduction in plants. Crit Rev Plant Sci 12: 185–211 (1993).

    PubMed  Google Scholar 

  49. Raz V, Fluhr R: Calcium requirement for ethylene-dependent responses. Plant Cell 4: 1123–1130 (1992).

    Article  PubMed  Google Scholar 

  50. Roberts DM, Harmon AC: Calcium-modulated proteins: targets of intracellular calcium signals in higher plants. Annu Rev Plant Physiol Plant Mol Biol 43: 375–414 (1992).

    Article  Google Scholar 

  51. Roux SJ: Calcium-regulated nuclear enzymes: potential mediators of phytochrome-induced changes in nuclear metabolism. Photochem Photobiol 56: 811–814 (1992).

    PubMed  Google Scholar 

  52. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  53. Schindler U, Terzaghi W, Beckmann H, Kadesch T, Cashmore AR: DNA binding site preferences and transcriptional activation properties of the Arabidopsis transcription factor GBF1. EMBO J 11: 1275–1289 (1992).

    PubMed  Google Scholar 

  54. Schmidt RJ: Opaque-2 and zein gene expression. In: Verma DPS (ed) Control of Plant Gene Expression, pp. 337–355. CRC Press, Boca Raton, FL (1993).

    Google Scholar 

  55. Sessa G, Meller Y, Fluhr R: A GCC element and a G-box motif participate in ethylene-induced expression of the PRB-1b gene. Plant Mol Biol 28: 145–153 (1995).

    PubMed  Google Scholar 

  56. Shen Q, Ho T-HD: Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABAresponsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7: 295–307 (1995).

    Article  PubMed  Google Scholar 

  57. Singh KB, Zhang B, Narasimhulu SB, Foley RC: Analysis of Ocs-element enhancer sequences and their binding factors. Results Probl Cell Diff 20: 197–207 (1994).

    Google Scholar 

  58. Stone JM, Walker JC: Plant protein kinase families and signal transduction. Plant Physiol 108: 451–457 (1995).

    Article  PubMed  Google Scholar 

  59. Sun L, Doxsee RA, Harel E, Tobin EM: CA-1, a novel phosphoprotein, interacts with the promoter of the cab140 gene in Arabidopsis and is undetectable in det1mutant seedlings. Plant Cell 5: 109–121 (1993).

    PubMed  Google Scholar 

  60. Tabata T, Nakayama T, Mikami K, Iwabuchi M: HBP-1a and HBP-1b: leucine zipper-type transcription factors of wheat. EMBO J 10: 1459–1467 (1991).

    PubMed  Google Scholar 

  61. Tabata T, Takase H, Takayama S, Mikami K, Nakatsuka A, Kawata T, Nakayama T, Iwabuchi M: A protein that binds to a cis-acting element of wheat histone genes has a leucine zipper motif. Science 245: 965–967 (1989).

    PubMed  Google Scholar 

  62. Watillon B, Kettmann R, Boxus P, Burny A: A calcium/calmodulin-binding serine/threonine protein kinase homologous to the mammalian type II calcium/calmodulindependent protein kinase is expressed in plant cells. Plant Physiol 101: 1381–1384 (1993).

    Article  PubMed  Google Scholar 

  63. Xanthoudakis S, Miao G, Wang F, Pan Y-CE, Curran T: Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J 11: 3323–3335 (1992).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meshi, T., Moda, I., Minami, M. et al. Conserved Ser residues in the basic region of the bZIP-type transcription factor HBP-1a(17): importance in DNA binding and possible targets for phosphorylation. Plant Mol Biol 36, 125–136 (1998). https://doi.org/10.1023/A:1005934332530

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005934332530

Navigation