Skip to main content
Log in

Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants expressing NSM gene sequences

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Transgenic Nicotiana tabacum plants expressing RNA sequences of the tomato spotted wilt virus NSM gene, which encodes the putative viral movement protein, were found to be highly resistant to infection with the virus. Expression of untranslatable as well as anti-sense RNA of the NSM gene resulted in resistance levels as high as those in plants expressing translatable RNA sequences. For all three types of transgenic plants resistance levels of up to 100% were reached in the S2 progeny. These results indicate that the resistance mediated by the NSM gene is accomplished by expression of transcripts rather than protein in transgenic plants, similar to previously observed N gene-mediated resistance. Protoplast inoculations revealed that resistant plants expressing NSM are, in contrast to N transgenic resistant plants, not resistant at the cellular level. This suggests the RNA-mediated resistance mechanism against TSWV targets viral mRNAs rather than the viral genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Avila AC, Huguenot C, Resende R de</del> </del> O, Kitajima EW, Goldbach RW, Peters D: Serological differentiation of 20 isolates of tomato spotted wilt virus. J Gen Virol 71: 2801–2807 (1990).

    Google Scholar 

  2. de Avila AC, de Haan P, Smeets MLL, Resende R de O, Kormelink R, Kitajima EW, Goldbach RW, Peters D: Distinct levels of relationships between tospovirus isolates. Arch Virol 128: 211–127 (1992).

    Google Scholar 

  3. de Avila AC, de Haan P, Kormelink R, Resende R de O, Goldbach RW, Peters D: Classification of tospoviruses based on phylogeny of nucleoprotein gene sequences. J Gen Virol 74: 153–159 (1993).

    Google Scholar 

  4. Audy P, Palikaitis P, Slack SA, Zaitlin M: Replicase-mediated resistance to potato virus Y in transgenic tobacco plants. Mol Plant-Microbe Interact 7: 15–22 (1994).

    Google Scholar 

  5. Bevan M: Binary Agrobacterium vectors for plant transformation. Nucl Acids Res 12: 8711–8722 (1984).

    Google Scholar 

  6. Brederode FT, Taschner PEM, Posthumus E, Bol JF: Replicase-mediated resistance to alfalfa mosaic virus. Virology 207: 467–474 (1995).

    Google Scholar 

  7. Carr JP, Zaitlin M: Replicase mediated resistance. Sem Virol 4: 339-347 (1994).

    Google Scholar 

  8. Cooper B, Lapidot M, Heick JA, Dodds JA, Beachy RN: A defective movement protein of TMV in transgenic plants confers resistance to multiple viruses whereas the functional analog increases susceptibility. Virology 206: 307–313 (1995).

    Google Scholar 

  9. Ditta G, Stanfield S, Corbin D, Helsinki DR: Broad host range cloning system for gram-negative bacteria: construction of a gene bank for Rhizobium melitoti. Proc Natl Acad Sci USA 77: 7347–7351 (1980).

    Google Scholar 

  10. de Haan P, Wagemakers L, Peters D, Goldbach R: The S RNA segment of tomato spotted wilt virus has an ambisense character. J Gen Virol 71: 1001–1007 (1990).

    Google Scholar 

  11. de Haan P, Kormelink R, Resende R de O, van Poelwijk F, Peters D, Goldbach R: Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J Gen Virol 72: 2207–2216 (1991).

    Google Scholar 

  12. de Haan P, Gielen JJL, Prins M, Wijkamp IG, van Schepen A, Peters D, van Grinsven MQJM, Goldbach R: Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants. Bio/technology 10: 1133–1137 (1992).

    Google Scholar 

  13. Dougherty WG, Lindbo JA, Smith HA, Parks TD, Swaney S, Proebsting WM: RNA-mediated virus resistance in transgenic plants: Exploitation of a cellular pathway possibly involved in RNA degradation. Mol Plant-Microbe Interact 7: 544–552 (1994).

    Google Scholar 

  14. Gallie DR, Sleat DE, Watts JW, Turner PC: A comparison of eukaryotic viral 5′-leader sequences as enhancers of mRNA expression in vivo. Nucl Acids Res 15: 8693–8711 (1987).

    Google Scholar 

  15. Gielen JJL, deHaan P, Kool AJ, Peters D, van Grinsven MQJM, Goldbach RW: Engineered resistance to tomato spotted wilt virus, a negative-strand RNA virus. Bio/technology 9: 1363–1367 (1991).

    Google Scholar 

  16. Goldbach R, Peters D: Possible causes of the emergence of tospovirus diseases. Sem Virol 5: 113–120 (1994).

    Google Scholar 

  17. Golemboski DB, Lomonossoff GP, Zaitlin M: Plants transformed with a tobacco mosaic virus nonstructural gene are resistant to the virus. Proc Natl Acad Sci USA 87: 6311–6315 (1990).

    Google Scholar 

  18. Gonsalves D, Trujillo EE: Tomato spotted wilt virus in papaya and detection of the virus in ELISA. Plant Dis 70: 501–506 (1986).

    Google Scholar 

  19. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT: A simple method for transferring genes into plants. Science 227: 1229–11231(1985).

    Google Scholar 

  20. Kim JW, Sun SSM, German, TL: Disease resistance in tobacco and tomato plants transformed with the tomato spotted wilt virus nucleocapsid gene. Plant Dis 78: 615–621 (1994).

    Google Scholar 

  21. Kormelink R, Kitajima EW, de Haan P, Zuidema D, Peters D, Goldbach R: The nonstructural protein (NSS) encoded by the ambisense S RNA segment of tomato spotted wilt virus is associated with fibrous structures in infected plant cells. Virology 181: 459–468 (1991).

    Google Scholar 

  22. Kormelink R, de Haan P, Peters D, Goldbach R: Viral RNA synthesis in tomato spotted wilt virus-infected Nicotiana rustica plants. J Gen Virol 73: 687–693 (1992).

    Google Scholar 

  23. Kormelink R, de Haan P, Meurs C, Peters D, Goldbach R: The nucleotide sequence of the M RNA segment of tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. J Gen Virol 73: 2795–2804 (1992).

    Google Scholar 

  24. Kormelink R, Storms M, van Lent J, Peters D, Goldbach R: Expression and subcellular localization of the NSM protein of tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 200: 56–65 (1994).

    Google Scholar 

  25. Kikkert M, van Poelwijk F, Storms MMH, Kassies W, Bloksma H, van Lent J, Kormelink R, Goldbach R: A protoplast system for studying tomato spotted wilt virus infection (submitted).

  26. Lapidot M, Gafni R, Ding B, Wolf S, Lucas WJ, Beachy RN: A dysfunctional movement protein of tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. Plant J 4: 959–970 (1993).

    Google Scholar 

  27. Law MD, Moyer JW: A tomato spotted wilt-like virus with a serologically distinct N protein. J Gen Virol 71: 933–938 (1990).

    Google Scholar 

  28. Lindbo JA, Dougherty WG: Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189: 725–733 (1992).

    Google Scholar 

  29. Lindbo JA, Silva-Rosales L, Proebsting WM, Dougherty WG: Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5: 1749–1759 (1993).

    Google Scholar 

  30. Longstaff M, Brigneti G, Boccard F, Chapman S, Baulcombe D: Extreme resistance to potato virus X infection in plants expressing a modified component of the putative viral replicase. EMBO J 12: 379–386 (1993).

    Google Scholar 

  31. MacKenzie DJ, Ellis PJ: Resistance to tomato spotted wilt virus infection in transgenic tobacco expressing the viral nucleocapsid gene. Mol Plant-Microbe Interact 5: 34–40 (1992).

    Google Scholar 

  32. MacFarlane SA, Davies JW: Plants transformed with a region of the 201-kilodalton replicase gene from pea early browning virus RNA 1 are resistance to virus infection. Proc Natl Acad Sci USA 89: 5829–5833 (1992).

    Google Scholar 

  33. Maiti IB, Murphy JF, Shaw JG, Hunt AG: Plants that express a potyvirus proteinase gene are resistant to virus infection. Proc Natl Acad Sci USA 90: 6110–6114 (1993).

    Google Scholar 

  34. Malyshenko SI, Kondakova OA, Nazarova Ju V, Kaplan IB, Atabekov JG: Reduction of tobacco mosaic virus accumulation in transgenic plants producing non-functional viral transport proteins. J Gen Virol 74: 1149–1156 (1993).

    Google Scholar 

  35. Matzke MA, Matzke AJM: How and why do plants inactivate homologous (trans)genes? Plant Physiol 107: 679–685 (1995).

    Google Scholar 

  36. Mueller E, Gilbert J, Davenport G, Brigneti G, Baulcombe DC: Homology-dependent resistance: Transgenic virus resistance in plants related to homology-dependent gene silencing. Plant J 7: 1001–1013 (1995).

    Google Scholar 

  37. Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Martilli GP, Mayo MA, Summers MD: Sixth report of the International Committee on Taxonomy of Viruses) pp. 300–315. Springer-Verlag, Wien/New York (1995).

    Google Scholar 

  38. Pang S-Z, Nagpala P, Wang M, Slightom JL, Gonsalves D: Resistance to heterologous isolates of tomato spotted wilt virus in transgenic tobacco expressing its nucleocapsid protein gene. Phytopathology 82: 1223–1229 (1992).

    Google Scholar 

  39. Pang S-Z, Jan F-J, Carney K, Stout J, Tricoli DM, Quemada HD, Gonsalves D: Post-transcriptional silencing and consequent tospovirus resistance in transgenic lettuce are affected by transgene dosage and plant development. Plant J 9: 899–909 (1996).

    Google Scholar 

  40. Prins M, de Haan P, Luyten, R, van Veller M, van Grinsven MQJM, Goldbach R: Broad resistance to tospoviruses in transgenic tobacco plants expressing three tospoviral nucleoprotein sequences. Mol Plant-Microbe Interact 8: 85–91 (1995).

    Google Scholar 

  41. Prins M, Resende R de O, Anker C, van Schepen A, de Haan P, Goldbach R: Engineered RNA-mediated resistance to tomato spotted wilt virus is sequence specific. Mol Plant-Microbe Interact 9: 416–418 (1996).

    Google Scholar 

  42. Prins M, Storms MMH, Kormelink R, de Haan P, Goldbach R: Transgenic tobacco plants expressing the putative movement protein of tomato spotted wilt tospovirus exhibit aberrations in growth and appearance. Transgenic Res, in press.

  43. Sakimura K: The present status of thrips-borne viruses. In: Maramorosch K (ed) Biological Transmission of Disease agents, pp. 33–40. Academic Press, New York (1962).

    Google Scholar 

  44. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1992).

    Google Scholar 

  45. Satyanarayana T, Mitchell SE, Reddy DVR, Brown S, Kresovich S, Jarret R, Naidu RA, Demski JW: Peanut bud necrosis tospovirus S RNA: complete nucleotide sequence, genome organization and homology to other tospoviruses. Arch Virol 141: 85–98 (1996).

    Google Scholar 

  46. Sijen T, Wellink J, Hendriks J, Verver J, van Kammen A: Replication of cowpea mosaic virus RNA1 or RNA2 is specifically blocked in transgenic Nicotiana benthamiana plants expressing the full-length replicase or movement protein genes. Mol Plant-Microbe Interact 8: 340–347 (1995).

    Google Scholar 

  47. Storms MMH, Kormelink R, Peters D, van Lent JWM, Goldbach R: The non-structural NSm protein of tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology 214: 485–493 (1995).

    Google Scholar 

  48. Tas PWL, Boerjan ML, Peters D: The structural proteins of tomato spotted wilt virus. J Gen Virol 36: 267–279 (1977).

    Google Scholar 

  49. Ullman DE, German TL, Sherwood JL, Westcot DM, Custer DM: Tospovirus replication in insect vector cells: Immunocytochemical evidence that the nonstructural protein encoded by the S RNAof tomato spotted wilt tospovirus is present in thrips vector cells. Phytopathology 83: 456–463 (1993).

    Google Scholar 

  50. Ultzen T, Gielen JJL, Venema F, Westerbroek A, de Haan P, Tan M-L, Schram A, van Grinsven MQJM, Goldbach R: Resistance to tomato spotted wilt virus in transgenic tomato hybrids. Euphytica 85: 159–168 (1995).

    Google Scholar 

  51. van der Vlugt RAA, Ruiter RK, Goldbach R: Evidence for sense RNA-mediated resistance to PVYN in tobacco plants transformed with the viral coat protein cistron. Plant Mol Biol 20: 631–639 (1992).

    Google Scholar 

  52. van Poelwijk F, Boye K, Oosterling R, Peters D, Goldbach R: Detection of the L protein of tomato spotted wilt virus. Virology 197: 468–470 (1993).

    Google Scholar 

  53. Vardi E, Sela I, Edelbaum O, Livneh O, Kuznetsova L, Stram Y: Plants transformed with a cistron of potato virus Y protease (NIa) are resistant to virus infection. Proc Natl Acad Sci USA 90: 7513–7517 (1993).

    Google Scholar 

  54. Von Arnhim A, Stanley J: Inhibition of african cassava mosaic virus systemic infection by movement protein from the related geminivirus tomato golden mosaic virus. Virology 187: 555–564 (1992).

    Google Scholar 

  55. Wijkamp I, van Lent J, Kormelink R, Goldbach R, Peters D: Multiplication of tomato spotted wilt virus in its insect vector, Frankliniella occidentalis. J Gen Virol 74: 341–349 (1993).

    Google Scholar 

  56. Wilson TMA: Strategies to protect crop plants against viruses: pathogen-derived resistance blossoms. Proc Natl Acad Sci USA 90: 3134–3141 (1993).

    Google Scholar 

  57. Yeh SD, Chang TF: Nucleotide sequence of the N gene of watermelon silver mottle virus, a proposed new member of the genus Tospovirus. Phytopathology 85: 58–64 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prins, M., Kikkert, M., Ismayadi, C. et al. Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants expressing NSM gene sequences. Plant Mol Biol 33, 235–243 (1997). https://doi.org/10.1023/A:1005729808191

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005729808191

Navigation