Skip to main content
Log in

Modulation at a Distance of Proton Conductance through the Saccharomyces cerevisiae Mitochondrial F1F0-ATP Synthase by Variants of the Oligomycin Sensitivity-Conferring Protein Containing Substitutions near the C-Terminus

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

We have sought to elucidate how the oligomycin sensitivity-conferring protein (OSCP) of the mitochondrial F1F0-ATP synthase (mtATPase) can influence proton channel function. Variants of OSCP, from the yeast Saccharomyces cerevisiae, having amino acid substitutions at a strictly conserved residue (Gly166) were expressed in place of normal OSCP. Cells expressing the OSCP variants were able to grow on nonfermentable substrates, albeit with some increase in generation time. Moreover, these strains exhibited increased sensitivity to oligomycin, suggestive of modification in functional interactions between the F1 and F0 sectors mediated by OSCP. Bioenergetic analysis of mitochondria from cells expressing OSCP variants indicated an increased respiratory rate under conditions of no net ATP synthesis. Using specific inhibitors of mtATPase, in conjunction with measurement of changes in mitochondrial transmembrane potential, it was revealed that this increased respiratory rate was a result of increased proton flux through the F0 sector. This proton conductance, which is not coupled to phosphorylation, is exquisitely sensitive to inhibition by oligomycin. Nevertheless, the oxidative phosphorylation capacity of these mitochondria from cells expressing OSCP variants was no different to that of the control. These results suggest that the incorporation of OSCP variants into functional ATP synthase complexes can display effects in the control of proton flux through the F0 sector, most likely mediated through altered protein—protein contacts within the enzyme complex. This conclusion is supported by data indicating impaired stability of solubilized mtATPase complexes that is not, however, reflected in the assembly of functional enzyme complexes in vivo. Given a location for OSCP atop the F13β3 hexamer that is distant from the proton channel, then the modulation of proton flux by OSCP must occur “at a distance.” We consider how subtle conformational changes in OSCP may be transmitted to F0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Altendorf, K., Stalz, W., Greie, J., and Deckers-Hebestreit, G. (2000). J. Exp. Biol. 203, 19-28.

    Google Scholar 

  • Barik, S. (1993). In Methods in Molecular Biology, Vol. 15: PCR Protocols: Current Methods and Applications (White, B. A., ed.), Humana Press, Totowa, NJ, pp. 277-286.

    Google Scholar 

  • Bateson, M., Devenish, R. J., Nagley, P., and Prescott, M. (1996). Anal. Biochem. 238, 14-18.

    Google Scholar 

  • Boyer, P. D. (1997). Annu. Rev. Biochem. 66, 717-749.

    Google Scholar 

  • Boyle, G. M., Roucou, X., Nagley, P., Devenish, R. J., and Prescott, M. (1999). Eur. J. Biochem. 262, 315-323.

    Google Scholar 

  • Capaldi, R. A., Aggeler, R., Turina, P., and Wilkens, S. (1994). Trends Biochem. Sci. 19, 284-289.

    Google Scholar 

  • Cox, G. B., Devenish, R. J., Gibson, F., Howitt, S. M., and Nagley, P. (1992). In Molecular Mechanisms in Bioenergetics (Ernster, L., ed.), Elsevier, Amsterdam, pp. 283-315.

    Google Scholar 

  • Devenish, R. J., Prescott, M., Roucou, X., and Nagley, P. (2000). Biochim. Biophys. Acta 1458, 428-442.

    Google Scholar 

  • Dupuis, A., Satre, M., and Vignais, P. V. (1983). FEBS Lett. 156, 99-102.

    Google Scholar 

  • Elble, R. (1992). BioTechniques 13, 18-20.

    Google Scholar 

  • Emaus, R. K., Grunwald, R., and Lemasters, J. J. (1986). Biochim. Biophys. Acta 850, 436-448.

    Google Scholar 

  • Frische, O. and Junge, W. (1996). Biochim. Biophys. Acta 1274, 94-100.

    Google Scholar 

  • Gause, E. M., Buck, M. A., and Douglas, M. G. (1981). J. Biol. Chem. 256, 557-559.

    Google Scholar 

  • Golden, T. R. and Pedersen, P. L. (1998). Biochemistry 37, 13871-13881.

    Google Scholar 

  • Gray, R. E., Law, R. H. P., Devenish, R. J., and Nagley, P. (1996). Methods Enzymol. 246, 369-389.

    Google Scholar 

  • Guélin, E., Chevallier, J., Rigoulet, M., Guérin, B., and Velours, J. (1993). J. Biol. Chem. 268, 161-167.

    Google Scholar 

  • Hadikusumo, R. G., Hertzog, P. J., and Marzuki, S. (1984). Biochim. Biophys. Acta 765, 258-267.

    Google Scholar 

  • Hazard, A. L. and Senior, A. E. (1994). J. Biol. Chem. 269, 427-432.

    Google Scholar 

  • Joshi, S., Javed, A. A., and Gibbs, L. C. (1992). J. Biol. Chem. 267, 12860-12867.

    Google Scholar 

  • Joshi, S., Cao, G-J., Nath, C., and Shah, J. (1996). Biochemistry 35, 12094-12103.

    Google Scholar 

  • Joshi, S., Cao, G-J., Nath, C., and Shah, J. (1997). Biochemistry 36, 10936-10943.

    Google Scholar 

  • Karrasch, S. and Walker, J. E. (1999). J. Mol. Biol. 290, 379-384.

    Google Scholar 

  • Law, R. H. P., Manon, S., Devenish, R. J., and Nagley, P. (1995). Methods Enzymol. 260, 133-163.

    Google Scholar 

  • Lill, H., Hensel, F., Junge, W., and Engelbrecht, S. (1996). J. Biol. Chem. 271, 32737-32742.

    Google Scholar 

  • MacLennan, D. H. and Tzagoloff, A. (1968). Biochemistry 7, 1603-1610.

    Google Scholar 

  • Mao, Y. and Mueller, D. M. (1997). Arch. Biochem. Biophys. 337, 8-16.

    Google Scholar 

  • Matsuno-Yagi, A. and Hatefi, Y. (1993). J. Biol. Chem. 268, 1539-1545.

    Google Scholar 

  • Matsuno-Yagi, A., Yagi, T., and Hatefi, Y. (1985). Proc. Natl. Acad. Sci. USA 82, 7550-7554.

    Google Scholar 

  • McLachlin, D. T., Bestard, J. A., and Dunn, S. D. (1998). J. Biol. Chem. 273, 15162-15168.

    Google Scholar 

  • McLachlin, D. T., Coveny, A. M., Clark, S. M., and Dunn, S. D. (2000). J. Biol. Chem. 275, 17571-17577.

    Google Scholar 

  • Mukhopadhyay, A., Zhou, X-Q., Uh, M., and Mueller, D.M. (1992). J. Biol. Chem. 267, 25690-25696.

    Google Scholar 

  • Nagley, P. (1988). Trends Genet. 4, 46-52.

    Google Scholar 

  • Ogilvie, I., Aggeler, R., and Capaldi, R. A. (1997). J. Biol. Chem. 272, 16652-16656.

    Google Scholar 

  • Ovchinnikov, Y. A., Modyanov, N. N., Grinkevich, V. A., Aldanova, N. A., Trubetskaya, O. E., Hundal, T., and Ernster, L. (1984a). FEBS Lett. 166, 19-22.

    Google Scholar 

  • Ovchinnikov, Y. A., Modyanov, N. N., Grinkevich, V. A., Kostetsky, P. V., Trubetskaya, O. E., Hundal, T., and Ernster, L. (1984b). FEBS Lett. 175, 109-112.

    Google Scholar 

  • Prescott, M., Bush, N., Nagley, P., and Devenish, R. J. (1994). Biochem. Mol. Biol. Intern. 34, 789-799.

    Google Scholar 

  • Prescott, M., Higuti, T., Nagley, P., and Devenish, R. J. (1995). Biochem. Biophys. Res. Commun. 207, 943-949.

    Google Scholar 

  • Pringle, M. J., Kenneally, M. K., and Joshi, S. (1990). J. Biol. Chem. 265, 7632-7637.

    Google Scholar 

  • Razaka-Jolly, D., Rigoulet, M., Guérin, B., and Velours, J. (1994). Biochemistry 33, 9684-9691.

    Google Scholar 

  • Roberts, H., Choo, W. M., Murphy, M., Marzuki, S., Lukins, H. B., and Linnane, A. W. (1979). FEBS Lett. 108, 501-504.

    Google Scholar 

  • Rodgers, A. J. W. and Capaldi, R. A. (1998). J. Biol. Chem. 273, 29406-29410.

    Google Scholar 

  • Rodgers, A. J. W., Wilkens, S., Aggeler, R., Morris, M. B., Howitt, S. M., and Capaldi, R. A. (1997). J. Biol. Chem. 272, 31058-31064.

    Google Scholar 

  • Sambongi, Y., Iko, Y., Tanabe, M., Omote, H., Iwamoto-Kihara, A., Ueda, I., Yanagida, T., Wada, Y., and Futai, M. (1999). Science 286, 1722-1724.

    Google Scholar 

  • Soubannier, V., Rusconi, F., Vaillier, J., Arselin, G., Chaignepain, S., Graves, P. V., Schmitter, J. M., Zhang, J. L., Mueller, D., and Velours, J. (1999). Biochemistry 38, 15017-15024.

    Google Scholar 

  • Stock, D., Leslie, A. G. W., and Walker, J. E. (1999). Science 286, 1700-1705.

    Google Scholar 

  • Svergun, D. I., Aldag, I., Sieck, T., Altendorf, K., Koch, M. H. J., Kane, D. J., Kozin, M. B., and Gruber, G. (1998). Biophys. J. 75, 2212-2219.

    Google Scholar 

  • Tzagoloff, A. (1970). J. Biol. Chem. 245, 1545-1551.

    Google Scholar 

  • Uh, M., Jones, D., and Mueller, D. M. (1990). J. Biol. Chem. 265, 19047-19052.

    Google Scholar 

  • Velours, J., Spannagel, C., Chaignepain, S., Vaillier, J., Arselin, G., Graves, P. V., Velours, G., and Camougrand, N. (1998). Biochimie 80, 793-801.

    Google Scholar 

  • Weber, J. and Senior, A. E. (1997). Biochim. Biophys. Acta 1319, 19-58.

    Google Scholar 

  • Wilkens, S. and Capaldi, R. A. (1998). Biochim. Biophys. Acta 1365, 93-97.

    Google Scholar 

  • Wilkens, S., Dunn, S. D., Chandler, J., Dahlquist, F.W., and Capaldi, R. A. (1997). Nat. Struct. Biol. 4, 198-201.

    Google Scholar 

  • Wilkens, S., Zhou, J., Nakayama, R., Dunn, S. D., and Capaldi, R. A. (2000). J. Mol. Biol. 295, 387-391.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyle, G.M., Roucou, X., Nagley, P. et al. Modulation at a Distance of Proton Conductance through the Saccharomyces cerevisiae Mitochondrial F1F0-ATP Synthase by Variants of the Oligomycin Sensitivity-Conferring Protein Containing Substitutions near the C-Terminus. J Bioenerg Biomembr 32, 595–607 (2000). https://doi.org/10.1023/A:1005674628249

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005674628249

Navigation