Skip to main content
Log in

Activity and stability of immobilised soybean lipoxygenase-1 in aqueous and supercritical carbon dioxide media

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The activity of immobilised soybean lipoxygenase-1 (LOX-1) was studied in aqueous and supercritical carbon dioxide (SCCO2) media for the production of 13S-hydroperoxyoctadecadenoic acid (13S-HPODE). In SCCO2, it was optimal at 33 °C and 25 MPa. A higher space-time yield of 5.7×10−3 Ms−1 mg−1 LOX-1 for 13S-HPODE was obtained in SCCO2 compared to only 5×10−5 Ms−1 mg−1 LOX-1 in aqueous medium. The stability of immobilised LOX-1 was only significantly affected by the pressurisation and depressurisation steps during reactions in SCCO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aage F, Sather GA (1970) Gas-liquid equilibrium of the oxygencarbon dioxide system. J. Chem. Eng. Data 15: 17–22.

    Google Scholar 

  • Affleck R, Xu ZF, Susawa V, Focht K, Clark DS, Dordick JS (1992) Enzymatic catalysis and dynamics in low-water environments. Proc. Natl. Acad. Sci. USA 89: 1100–1104.

    PubMed  Google Scholar 

  • Berry H, Debat H, Larreta-Garde V (1997) Excess substrate inhibition of soybean lipoxygenase-1 is mainly oxygen dependent. FEBS Lett. 408: 324–326.

    PubMed  Google Scholar 

  • Burke PA, Griffin RG Klibanov AM (1992) Solid-state NMR assessment of enzyme active centre structure under non-aqueous conditions. J. Biol. Chem. 267: 20057–20064.

    PubMed  Google Scholar 

  • Calvo AM, Hinze LL, Gardner HW, Keller NP (1999) Sporogenic effect of polyunsaturated fatty acids on development of Aspergillus sp. Appl. Environ. Microbiol. 65: 3668–3673.

    PubMed  Google Scholar 

  • Christopher JP, Pistorius EK, Regnier FE, Axelrod B (1972) Factors influencing the positional specificity of soybean lipoxygenase. Biochim. Biophys. Acta 289: 82–87.

    PubMed  Google Scholar 

  • Darrow AR, Organisciak DT (1994) An improved spectrophotometric tri-iodide assay for lipid hydroperoxides. Lipids 29: 591–594.

    PubMed  Google Scholar 

  • Drazen JM, Israel E, O'Bryrne PM(1995) Treatment of asthma with drugs modifying the leukotriene pathway. NewEngl. J. Med. 340: 197–206.

    Google Scholar 

  • Drouet JM, Legoy MD (1994) Production of 13(S)-hydroxy-9(Z),11(E)-octadecadenoic acid using soybean LOX-1 in a biphasic octane-water system. Tetrahedron Lett. 35: 3923–3926.

    Google Scholar 

  • Dumont T, Barth D (1992) Enzymatic reaction kinetic: comparison in an organic solvent and in supercritical carbon dioxide. Biotechnol. Bioeng. 39: 329–333.

    Google Scholar 

  • El-Saadani M, Esterbauer H, El-Sayeed M, Goher M, Nassar AY, Jürgens G (1989) A spectrophotometric assay for lipid peroxides in serum lipoproteins using a commercially available reagent. J. Lipid Res. 30: 627–631.

    PubMed  Google Scholar 

  • Feussner I, Porzel A, Wqasternack C (1997) Quantitative Analyse von Lipoxygenase-Metaboliten in Lipiden durch NMRMikroskopie. Biospektrum 3: 54–58.

    Google Scholar 

  • Galliard T, Chan HWS (1987) Lipoxygenases. In: Stumpf P, Conn EE, eds. The Biochemistry of Plants, Vol. 4. London: Academic Press Inc., pp. 132–157.

    Google Scholar 

  • Galliard T, Matthew JA (1976) The enzymic formation of long chain aldehydes and alcohols by alpha-oxidation of fatty acids in extracts of cucumber fruit (Cucumis sativus). Biochim. Biophys. Acta 424: 26–35.

    PubMed  Google Scholar 

  • Galliard T, Phillips DR, Matthew JA (1975) Enzymatic reactions of fatty acid hydroperoxides in extracts of potato tuber. II. Conversion of 9-and 13-hydroperoxy-octadecadienoic acids to monohydroxydienoic acid, epoxyhydroxy-and trihydroxymonoenoic acid derivatives. Biochim. Biophys. Acta 409: 157–171.

    PubMed  Google Scholar 

  • Galunsky B, Schlothhauer R, Böckle B, Kasche V (1994) Direct spectrophotometric measurement of enzyme activity in heterogeneous systems with insoluble substrates or immobilised enzyme. Anal. Biochem. 221: 213–214.

    PubMed  Google Scholar 

  • Gardner HW (1996) Lipoxygenase as a versatile biocatalyst. J. Am. Oil Chem. Soc. 73: 1347–1357.

    Google Scholar 

  • Gardner HW (1997) Analysis of Plant Lipoxygenase Metabolites. Dundee Oily Press Ltd., pp. 1–35.

  • Gardner HW (1999) Recent investigations into the lipoxygenase pathway of plants. Biochim. Biophys. Acta 1084: 221–239.

    Google Scholar 

  • Gargouri M, Drouet P, Hervagault JF, Legoy MD (1996) Investigating the behaviour of an enzyme in a bi-phasic system: soybean lipoxygenase-1. Biotechnol. Bioeng. 51: 573–580.

    Google Scholar 

  • Gießauf A, Magor W, Steinberger DJ, Marr R (1999) A study of hydrolases stability in supercritical carbon dioxide (SCCO2). Enzyme Microbiol. Technol. 24: 577–583.

    Google Scholar 

  • Ikushima Y, Saito N, Yokohama T, Hatakeda K, Ito S, Arai M, Blanch HW (1992) Solvents effects on an enzymatic ester synthesis in supercritical CO2. Chem. Lett.: 109–112.

  • Israel E, Cohn J, Drazen JM (1996) Effect of treatment with Zileuton, a 5-LOX inhibitor, in patients with asthma (a randomised controlled trial). J. Am. Med. Assoc. 275: 931–936.

    Google Scholar 

  • Kachalova GS, Morozov VN, Morozova TY, Myachin ET, Vagin AA, Strokopytov BV, Nekrasov YuV (1991) Comparison of structures of dry and wet hen egg-white lysozyme molecule at 1.8 Å resolution. FEBS Lett. 284: 91–94.

    PubMed  Google Scholar 

  • Kamat SV, Iwaskekewycz B, Beckman EJ, Russel AJ (1993) Biocatalytic synthesis of acrylates in supercritical fluids: tuning enzyme activity by changing pressure. Proc. Natl. Acad. Sci. USA 90: 2940–2944.

    PubMed  Google Scholar 

  • Kasche V, Schlothauer R, Brunner G (1988) Enzyme denaturation in SCCO2: stabilisation effects of S-S bonds during the depressurisation steps. Biotechnol. Lett. 10: 569–574.

    Google Scholar 

  • Lozano P, Avellaneda A, Pascual R, Iborra J (1999) Stability of immobilised α-chymotrypsin in supercritical carbon dioxide. Biotechnol. Lett. 18: 1345–1350.

    Google Scholar 

  • Marty A, Chulalaksananukul W, Condoret JS, Willmot RM, Durand G (1990) Comparison of lipase-catalysed esterification in supercritical carbon dioxide and in n-hexane. Biotechnol. Lett. 12: 11–16.

    Google Scholar 

  • Nakaruma K (1990) Biochemical reactions in supercritical fluids. Trends Biotechnol. 8: 288–292.

    Google Scholar 

  • Nakumura K, Min Chi Y, Yamada, Y, Yano T (1986) Lipase activity and stability in supercritical carbon dioxide. Chem. Eng. Commun. 45: 207–212.

    Google Scholar 

  • Overmeyer A, Schrader-Lippelt S, Kasche V, Brunner G (1999) Lipase catalysed kinetic resolution of racemates at temperatures from 40°C to 160°C in supercritical carbon dioxide. Biotechnol. Lett. 21: 65–69.

    Google Scholar 

  • Russell AJ, Beckman EJ, Chaudhary AK (1994) Studying enzyme activity in supercritical fluids. Chem. Tech.-Leipzig 24: 33–37.

    Google Scholar 

  • Veldink GA, Vliegenthart JF, Boldingh J (1977) Plant lipoxygenases. Progr. Chem. Fats Lipids 15: 131–166.

    Google Scholar 

  • Whitehead I, Muller BL, Dean C (1995) Industrial use of soybean lipoxygenase for the production of natural green note flavour compounds. Cereals Food. World 40: 193–197.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chikere, A., Galunsky, B., Overmeyer, A. et al. Activity and stability of immobilised soybean lipoxygenase-1 in aqueous and supercritical carbon dioxide media. Biotechnology Letters 22, 1815–1821 (2000). https://doi.org/10.1023/A:1005626806321

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005626806321

Navigation