Skip to main content
Log in

Identification of inorganic crystal-specific sequences using phage display combinatorial library of short peptides: A feasibility study

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The feasibility of using a combinatorial phage display library of decapeptides to identify ligands which can interact with the surface of a crystal was assessed using geological calcium carbonate as a model. Two relatively strong binding clones were identified by ELISA, sequenced and the encoded oligopeptides were prepared by solid phase synthesis and their properties compared with those of casein hydrolysate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addadi L, Weiner S (1992) Control and design principles in biological mineralization. Angew. Chemie (Int. Ed.) 31: 153-169.

    Google Scholar 

  • Aizenberg J, Black AJ, Whitesides GM (1999) Control of crystal nucleation by patterned self-assembled monolayers. Nature 398: 495-498.

    Google Scholar 

  • Belcher AM, Wu XH, Christensen RJ, Hansma PK, Stucky GD, Morse DE (1996) Control of crystal phase switching and orientation by soluble mollusc proteins. Nature 381: 56-58.

    Google Scholar 

  • Berman A, Addadi L, Kvick L, Leiserowitz L, Nelson M, Weiner S (1990) Interaction of sea urchin proteins in calcite-study of crystalline composite material. Science 250: 664-667.

    Google Scholar 

  • Berman A, Addadi L, Weiner S (1988) Interaction of sea urchin skeleton macromolecules with growing calcite crystal-a study of intercrystalline proteins. Nature 331: 546-548.

    Google Scholar 

  • Berman A, Hanson J, Leiserowitz L, Koetzle TF, Weiner S, Addadi L (1993) Biological control of crystal texture-a wide spread strategy for adapting crystal properties to function. Science 259: 776-779.

    Google Scholar 

  • DeOlivera DB, Laursen RA (1997) Control of calcite morphology by a peptide designed to bind to a specific surface. J. Am. Chem. Soc. 119: 10627-10631.

    Google Scholar 

  • D'Souza SM, Alexander C, Carr SW, Waller AM, Whitcombe MJ, Vulfson EN (1999) Directed nucleation of calcite at a crystalimprinted polymer surface. Nature 398: 312-316.

    Google Scholar 

  • Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusc shell macromolecules. Science 271: 67-69.

    Google Scholar 

  • Feeney RE, Yeh Y (1998) Antifreeze proteins: Current status and possible food uses. Trends Food Sci. Technol. 9: 102-106.

    Google Scholar 

  • Gerbaud V, Pignol D, Loret E, Bertrand JA, Berland Y, FontecillaCamps JC, Canselier JP, Gabas N, Verdier JM (2000) Mechanism of calcite crystal growth inhibition by the N-terminal undecapeptide of lithostatine. J. Biol. Chem. 275: 1057-1064.

    Google Scholar 

  • Graham LA, Liou YC, Walker VK, Davies PL (1997) Hyperactive antifreeze protein from beetles. Nature 388: 727-728.

    Google Scholar 

  • Hartel, RW (1996) Ice crystallization during the manufacture of ice cream. Trends Food Sci. Technol. 7: 315-321.

    Google Scholar 

  • Heuer AH, Fink DJ, Laraia VJ, Arias JL, Calvert PD, Kendall K, Messing GL, Blackwell J, Rieke PC, Thompson DH, Wheeler AP, Veis A, Caplan AI (1992) Innovative materials processing strategies: a biomimetic approach. Science 255: 1098-1105.

    Google Scholar 

  • Jia Z, DeLuca CI, Chao H, Davies PL (1996) Structural basis for binding of a globular antifreeze protein to ice. Nature 384: 85-288.

    Google Scholar 

  • Kam M, Perltreves D, Caspi D, Addadi L (1992) Antibodies against crystals. FASEB J. 6: 2608-2613.

    Google Scholar 

  • Larsson K (1994) Tailoring lipid functionality in foods. Trends Food Sci. Technol. 5: 311-315.

    Google Scholar 

  • Mann S (1993) Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365: 499-505.

    Google Scholar 

  • Mann S, Archibald DD, Didymus JM, Douglas T, Heywood BR, Meldrum FC, Reeves NJ (1993) Crystallization at inorganic-organic interfaces-biominerals and biomimetic synthesis. Science 261: 1286-1292.

    Google Scholar 

  • Mann S, Didymus JM, Sanderson NP, Heywood BR, Samper EJA (1990) Morphological influence of functionalised and non-functionalised α,ω-dicarboxylates on calcite crystallization. J.Chem. Soc., Faraday Trans. 86: 1873-1880.

    Google Scholar 

  • Sicheri F, Yang DSC (1995) Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 375: 427-431.

    Google Scholar 

  • Teng HH, Dove PM, Orme CA, DeYoreo JJ (1998) Thermodynamics of calcite growth: baseline for understanding biomineral formation. Science 282: 724-727.

    Google Scholar 

  • Weiner S, Addadi L (1991) Acidic macromolecules of mineralized tissues-the controllers of crystal formation. Trends Biochem. Sci. 16: 252-256.

    Google Scholar 

  • Wheeler AP, Low KC, Sikes CS (1991) CaCO3 crystal-binding properties of peptides and their influence on crystal growth. ACS Symp. Series 444: 72-84.

    Google Scholar 

  • Worral D, Elias L, Ashford D, Smallwood M, Sidebottom C, Lillford P, Telford J, Holt C, Bowles D (1998) A carrot-leucinerich repeat protein that inhibits ice crystallization. Science 282: 115-117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaskin, D.J., Starck, K. & Vulfson, E.N. Identification of inorganic crystal-specific sequences using phage display combinatorial library of short peptides: A feasibility study. Biotechnology Letters 22, 1211–1216 (2000). https://doi.org/10.1023/A:1005603117023

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005603117023

Navigation