Skip to main content
Log in

GCM Hindcasts of SST Forced Climate Variability over Agriculturally Intensive Regions

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The NASA/Goddard Institute for Space Studies (GISS) climatemodel is forced with globally observed sea-surfacetemperatures (SST) in five simulations, 1969–1991,with individual runs beginning from altered initialatmospheric conditions. The interannual variability ofmodeled anomalies of the Southern Oscillation Index,mid-tropospheric temperatures, 850 mb zonal winds andOutgoing Longwave Radiation over the tropical PacificOcean, which has the largest SST anomaly forcing, arestrongly correlated with observed trends which reflectENSO cycles. The model's rainfall variability overthree agriculturally intensive regions, two tropicaland one mid-latitude, is investigated in order toevaluate the potential usefulness of GCM predictionsfor agricultural planning. The correct sign ofZimbabwe seasonal precipitation anomalies was hindcastwithin a useful range of consensus only for selectseasons corresponding to extreme ENSO events for whichanomalous circulation patterns were ratherrealistically simulated. The correlation betweenhindcasts of Nordeste monthly precipitation andobservations increases with time smoothing, reaching0.64 for 5-month running means. Consensus betweenindividual runs is directly proportional to theabsolute value of Niño3 SST so that during ElNiño and La Niña years most simulations agreeon the sign of predicted Nordeste rainfall anomalies.We show that during selected seasons the uppertropospheric divergent circulation and near surfacemeridional displacements of the ITCZ are realisticallyrepresented by the ensemble mean of the simulations.This realistic simulation of both the synopticmechanisms and the resulting precipitation changesincreases confidence in the GCM's potential forseasonal climate prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boer, G., Arpe, K., Blackburn, M., Déqué, M., Gates, W., Hart, T., Le Treut, H., Roeckner, E., Sheinin, D., Simmonds, I., Smith, R., Tokioka, T., Wetherald, R., and Williamson, D.: 1992, ‘Some Results from an Intercomparison of the Climates Simulated by 14 General Circulation Models’, JGR 97, 12771-12786.

    Google Scholar 

  • Boyle, J. S.: 1998, ‘Evaluation of the Annual Cycle of Precipitation over the United States in GCMs: AMIP Simulations’, J. Climate 11, 1041-1055.

    Google Scholar 

  • Chelliah, M., Ropelewski, C., and Rasmusson, E.: 1998, ‘Low Frequency Variability and Composite Atmospheric Circulation over the Globe Associated with ‘ENSO’ Based on 40 Years of NCEP/NCAR Reanalysis Data’, in Prepint Volume, Ninth Conference on Global Change Studies, AMS, Phoenix, AZ, pp. 192-195.

    Google Scholar 

  • Chu, P-S.: 1991, ‘Brazil's Climate Anomalies and ENSO’, Chapter 3 in Glantz, M., Katz, R., and Nicholls, N. (eds.), Teleconnections Linking Worldwide Climate Anomalies, Cambridge University Press, New York, p. 43.

    Google Scholar 

  • Del Genio, A. and Yao, M.-S.: 1993, ‘Efficient Cumulus Parameterization for Long-Term Climate Studies. The GISS Scheme’, in Emanuel, K. and Raymond, D. (eds.), Cumulus Parameterization, Amer. Meteorol. Soc. Monograph Series, Vol. 24, Boston, MA, pp. 181-184.

  • Del Genio, A., Yao, M.-S., Kovari, W., and Lo, K.-W.: 1996, ‘A Prognostic Cloud Water Parameterization for Global Climate Models’, J. Climate 9, 270-304.

    Google Scholar 

  • Druyan, L., Shah, K., Lo, K.-W., Marengo, J., and Russell, G.: 1995, ‘Impacts of Model Improvements on GCM Sensitivity to SST Forcing’, Int. J. Clim. 15, 1061-1086.

    Google Scholar 

  • Gates, L.: 1992, ‘AMIP: The Atmospheric Model Intercomparison Project’, Bull. Amer. Meteor. Soc. 73, 1962-1970.

    Google Scholar 

  • Handler, P.: 1984, ‘Corn Yields in the United States and Sea-Surface Temperature Anomalies in the Equatorial Pacific Ocean during the Period 1868-1982’, Agric. For. Meteorol. 31, 25-32.

    Google Scholar 

  • Hansen, J., Russell, G., Rind, D., Stone, P., Lacis, A., Lebedeff, S., Ruedy, R., and Travis, L.: 1983, ‘Efficient Three-Dimensional Global Models for Climate Studies: Models I and II’, Mon. Wea. Rev. 111, 609-662.

    Google Scholar 

  • Hansen, Sato, Ruedy, Lacis, Asamoah, Beckford, Borenstein, Brown, Cairns, Carlson, Curran, de Castro, Druyan, Etwarrow, Ferede, Fox, Gaffen, Glascoe, Gordon, Hollandsworth, Jiang, Johnson, Lawrence, Lean, Lerner, Lo, Logan, Luckett, McCormick, McPeters, Miller, Minnis, Ramberran, Russell, G., Russell, P., Stone, Tegen, Thomas, Thomason, Thompson, Wilder, Willson, and Zawodny: 1997, ‘Forcings and Chaos in Interannual to Decadal Climate Change’, JGR 102, 25679-25720.

    Google Scholar 

  • Hartke, G. and Rind, D.: 1997, ‘Improved Surface and Boundary Layer Models for the GISS GCM’, JGR 102, 16407-16422.

    Google Scholar 

  • Hastenrath. S. and Heller, L.: 1977, ‘Dynamics of Climate Hazards in Northeast Brazil’, Quart. J. Roy. Meteorol. Soc. 103, 77-92.

    Google Scholar 

  • Hastenrath, S. and Druyan, L.: 1993, ‘Circulation Anomaly Mechanisms in the Tropical Atlantic Sector During the Northeast Brazil Rainy Season: Results from the GISS GCM’, J. Geophys. Res. 98 (D8), 14917-14923.

    Google Scholar 

  • Hastenrath, S. and Greischar, L.: 1993a, ‘Circulation Mechanisms Related to Northeast Brazil Rainfall Anomalies’, J. Geophys. Res. 98 (D8), 5093-5102.

    Google Scholar 

  • Hastenrath, S. and Greischar, L.: 1993b, ‘FurtherWork on the Prediction of Northeast Brazil Rainfall Anomalies’, J. Climate 6, 743-758.

    Google Scholar 

  • Hoerling, M. and Kumar, A.: 1997, ‘Origins of Extreme Climate States during the 1982-1983 ENSO Winter’, J. Climate 10, 2859-2870.

    Google Scholar 

  • Houghton, J., Meira Filho, L., Callender, B., Harris, N., Kattenberg, A., and Maskell, K. (eds.): 1996, Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge, p. 250.

    Google Scholar 

  • Kousky, V. and Chu, P-S.: 1978, ‘Fluctuations in Annual Rainfall for Northeast Brazil’, J. Meteorol. Soc. Japan 57, 457-465.

    Google Scholar 

  • Kousky, V. and Leetmaa, A.: 1989, ‘The 1986-1987 Pacific Warm Episode: Evolution of Oceanic and Atmospheric Fields’, J. Climate 2, 254-267.

    Google Scholar 

  • Lau, K.-M., Kin, J. H., and Sud, Y.: 1996, ‘Intercomparison of Hydrologic Process in AMIP GCMs’, Bull. Amer. Meteorol. Soc. 77, 2209-2227.

    Google Scholar 

  • Legates, D. and Willmott, C.: 1990, ‘Mean Seasonal and Spatial Variability in Gauge-Corrected, Global Precipitation’, Int. J. Clim. 10, 111-127.

    Google Scholar 

  • Lindesay, J.: 1988, ‘South African Rainfall, the Southern Oscillation and a Southern Hemisphere Semi-Annual Cycle’, J. Climatol. 8, 17-30.

    Google Scholar 

  • Makarau, A. and Jury, M.: 1997, ‘Seasonal Cycle of Convective Spells over Southern Africa during Austral Summer’, Int. J. Clim. 17, 1317-1332.

    Google Scholar 

  • Marengo, J. and Hastenrath, S.: 1993, ‘Case Studies of Extreme Climatic Events in the Amazon Basin’, J. Climate 6, 617-627.

    Google Scholar 

  • Matarira, C.: 1990, ‘Drought over Zimbabwe in a Regional and Global Context’, Int. J. Clim. 10, 609-625.

    Google Scholar 

  • Mechoso, C. and Lyons, S.: 1988, ‘On the Atmospheric Response to SST Anomalies Associated with the Atlantic Warm Event during 1984’, J. Climate 1, 422-428.

    Google Scholar 

  • Mechoso, C., Lyons, S., and Spahr, J.: 1990, ‘The Impact of Sea-Surface Temperature Anomalies on the Rainfall over Northeast Brazil’, J. Climate 3, 812-826.

    Google Scholar 

  • Moura, A. and Shukla, J.: 1981, ‘On the Dynamics of Droughts in Northeast Brazil: Observations, Theory and Numerical Experiments with a General Circulation Model’, J. Atmos. Sci. 38, 2653-2675.

    Google Scholar 

  • Reynolds, R. and Smith, T.: 1994, ‘Improved Global Sea-Surface Temperature Analyses’, J. Climate 7, 929-948.

    Google Scholar 

  • Rind, D. and Lerner, J.: 1996, ‘Use of On-Line Tracers as a Diagnostic Tool in General Circulation Model Development. 1. Horizontal and Vertical Transport in the Troposphere’, JGR 101, 12667-12683.

    Google Scholar 

  • Rind, D., Lerner, J., Shah, K., and Suozzo, R.: 1999, ‘Use of On-Line Tracers as a Diagnostic Tool in General Circulation Model Development. 2. Transport between the Troposphere and Stratosphere’, JGR 104, 9151-9168.

    Google Scholar 

  • Ropelewski, C. and Halpert, M.: 1987, ‘Global and Regional Scale Precipitation Patterns Associated with El Niño/Southern Oscillation’, Mon. Wea. Rev. 115, 1606-1626.

    Google Scholar 

  • Rosenzweig, C. and Abramopolous, F.: 1997, ‘Land-Surface Model Development for the GISS GCM’, J. Climate 10, 2040-2054.

    Google Scholar 

  • Rossow, W. and Schiffer, R.: 1991, ‘ISCCP Cloud Data Products’, Bull. Amer. Meteorol. Soc. 72, 2-20.

    Google Scholar 

  • Shah, K. and Rind, D.: 1995, ‘Use of Microwave Brightness Temperatures with a General Circulation Model’, JGR 100, 13841-13874.

    Google Scholar 

  • Shah, K. and Rind, D.: 1998, ‘Comparison of Upper Tropospheric and Lower Stratospheric Temperatures: MSU, Radiosonde, CIRA and NCEP/NCAR Reanalysis Climatologies’, JGR 103, 31569-31591.

    Google Scholar 

  • Shah, K., Rind, D., and Lonergan, P.: 1996, ‘Could High-Speed Civil Transport Aircraft Impact Stratospheric and Tropospheric Temperatures Measured by Microwave Sounding Unit?’, JGR 101, 28711-28721.

    Google Scholar 

  • Spencer, R. and Christy, J.: 1992, ‘Precision and Radiosonde Validation of Satellite Gridpoint Temperature Anomalies’, J. Climate 5, 847-857.

    Google Scholar 

  • Uvo, C., Repelli, C., Zebiak, S., and Kushnir, Y.: 1998, ‘The Relationships between Tropical Pacific and Atlantic SST and Northeast Brazil Monthly Precipitation’, J. Climate 11, 551-562.

    Google Scholar 

  • Ward, M. and Folland, C.: 1991, ‘Prediction of Seasonal Rainfall in the North Nordeste of Brazil Using Eigenvectors of SST’, Int. J. Clim. 11, 771-743.

    Google Scholar 

  • Yulaeva, A. and Wallace, J.: 1994, ‘The Signature of ENSO in Global Temperature and Precipitation Fields Derived from the Microwave Sounding Unit’, J. Climate 7, 1719-1736.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Druyan, L.M., Shah, K.P., Chandler, M.A. et al. GCM Hindcasts of SST Forced Climate Variability over Agriculturally Intensive Regions. Climatic Change 45, 279–322 (2000). https://doi.org/10.1023/A:1005571213805

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005571213805

Keywords

Navigation