Skip to main content
Log in

Change in Behavioral Response to Herbivore-induced Plant Volatiles in a Predatory Mite Population

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Damage by herbivorous spider mites induces plants to produce volatiles that attract predatory mites that consume the spider mites. A clear attraction to volatiles from Lima bean plants infested with the spider mite Tetranychus urticae has been consistently reported during more than 15 years for the predatory mite Phytoseiulus persimilis. We have monitored the response to volatiles from spider-mite infested Lima bean plants for a laboratory population of the predatory mite from 1991 to 1995 on a regular basis. A reduction in the level of attraction in the laboratory population of P. persimilis was recorded in mid-1992. The attraction of the laboratory population was weaker than that of a commercial population in the latter part of 1992, but the responses of these two populations were similarly weak in 1994 and 1995. Therefore, a behavioral change has also occurred in this commercial population. Experiments were carried out to address the potential causes of this change in attraction. The attraction of predators from a commercial population with a strong response decreased after being reared in our laboratory. Within a predator population with a low degree of attraction, strongly responding predators were present and they could be isolated on the basis of their behavior: predators that stayed on spider-mite infested plants in the rearing set-up had a strong attraction, while predators that had dispersed from the rearing set-up were not attracted to prey-infested bean plants. From our laboratory population with a low degree of attraction, isofemale lines were initiated and maintained for more than 20 generations. All isofemale lines exhibited a consistently strong attraction to spider mite-induced plant volatiles, similar to the attraction recorded for several populations in the past 15 years. Neither in a population with a strong attraction nor in two with a weak attraction was the response of the predators affected by a starvation period of 1–3 hr. Based on these results, possible causes for the observed reduction in predator attraction to spider mite-induced bean volatiles are discussed. The predatory mite P. persimilis is a cornerstone of biological control in many crops worldwide. Therefore, the change in foraging behavior recorded in this predator may have serious consequences for biological control of spider mites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Beerling, E. A. M., and Van der Geest, L. P. S. 1991. Microsporidiosis in mass-rearing of the predatory mites Amblyseius cucumeris and A. barkeri (Acarina: Phytoseiidae). Proc. Exp. Appl. Entomol. 2:157–162.

    Google Scholar 

  • BjØrnson, S., and Keddie, B. A. 1999. Effects of Microsporidium phytoseiuli (Microsporidia) on the performance of the predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae). Biol. Control 15:153–161.

    Google Scholar 

  • BjØrnson, S., Steiner, M. Y., and Keddie, B. A. 1996. Ultrastructure and pathology of Microsporidium phytoseiuli n. sp. infesting the predatory mite, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). J. Invertebr. Pathol. 68:223–230.

    Google Scholar 

  • Bruin, J., Dicke, M., and Sabelis, M. 1992. Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics. Experientia 48:525–529.

    Google Scholar 

  • Dicke, M., and Groeneveld, A. 1986. Hierarchical structure in kairomone preference of the predatory mite Amblyseius potentillae: Dietary component indispensable for diapause induction affects prey location behaviour. Ecol. Entomol. 11:131–138.

    Google Scholar 

  • Dicke, M., and Sabelis, M. W. 1988a. How plants obtain predatory mites as bodyguards. Neth. J. Zool. 38:148–165.

    Google Scholar 

  • Dicke, M., and Sabelis, M. W. 1988b. Infochemical terminology: Based on cost-benefit analysis rather than origin of compounds? Funct. Ecol. 2:131–139.

    Google Scholar 

  • Dicke, M., and Vet, L. E. M. 1999. Plant-carnivore interactions: Evolutionary and ecological consequences for plant, herbivore and carnivore, in H. Olff, V. K. Brown, and R. H. Drent (eds.). Herbivores: Between Plants and Predators, Blackwell Science, Oxford. pp. 483–520.

  • Dicke, M., Sabelis, M. W., and Groeneveld, A. 1986. Vitamin A deficiency modifies response of predatory mite Amblyseius potentillae to volatile kairomone of two-spotted spider mite, Tetranychus urticae. J. Chem. Ecol. 12:1389–1396.

    Google Scholar 

  • Dicke, M., Sabelis, M. W., Takabayashi, J., Bruin, J., and Posthumus, M. A. 1990a. Plant strategies of manipulating predator-prey interactions through allelochemicals: Prospects for application in pest control. J. Chem. Ecol. 16:3091–3118.

    Google Scholar 

  • Dicke, M., Maas van der, K. J., Takabayashi, J., and Vet, L. E. M. 1990b. Learning affects response to volatile allelochemicals by predatory mites. Proc. Exp. Appl. Entomol. 1:31–36.

    Google Scholar 

  • Dicke, M., Dijkman, H., and Wunderink, R. 1991. Response to synomones as a parameter in quality control of predatory mites, pp. 56–65, in F. Bigler (ed.). Proceedings, 5th Workshop IOBC Global Working Group “Quality Control of Mass Reared Arthropods,” Wageningen, March 1991.

  • Dicke, M., Baarlen, P. van, Wessels, R., and Dijkman, H. 1993. Herbivory induces systemic production of plant volatiles that attract predators of the herbivore: Extraction of endogenous elicitor. J. Chem. Ecol. 19:581–599.

    Google Scholar 

  • Dicke, M., Takabayashi, J., Posthumus, M. A., SchÜtte, C., and Krips, O. E. 1998. Plant-phytoseiid interactions mediated by prey-induced plant volatiles: Variation in production of cues and variation in responses of predatory mites. Exp. Appl. Acarol. 22:311–333.

    Google Scholar 

  • Dicke, M., Gols, R., Ludeking, D., and Posthumus, M. A. 1999. Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in Lima bean plants. J. Chem. Ecol. 25:1907–1922.

    Google Scholar 

  • Dong, H., and Chant, D. A. 1986. The olfactory response of three species of predacious phytoseiid mites (Acarina: Gamasina) to a prey tetranychid species. Int. J. Acarol. 12:51–55.

    Google Scholar 

  • Geden, C. J., Smith, L., Long, S. J., and Rutz, D. A. 1992. Rapid deterioration of searching behavior, host destruction, and fecundity of the parasitoid Muscidifurax raptor (Hymenoptera: Pteromalidae) in culture. Ann. Entomol. Soc. Am. 85:179–187.

    Google Scholar 

  • Godfray, H. C. J. 1994. Parasitoids: Behavioral and Evolutionary Ecology. Princeton University Press, Princeton, New Jersey, 473 pp.

    Google Scholar 

  • Helle, W. and Sabelis, M. W. (eds.). 1985. Spider Mites: Their Biology, Natural Enemies and Control. World Crop Pests 1B. Elsevier, Amsterdam.

  • Hess, R. T. and Hoy, M. A. 1982. Microorganisms associated with the spider mite predator Metaseiulus (c Typhlodromus) occidentalis: Electron microscope observations. J. Invertebr. Pathol. 40:98–106.

    Google Scholar 

  • Horton, D. R., and Moore, J. 1993. Behavioral effects of parasites and pathogens in insect hosts, pp. 107–124, in N. E. Beckage, S. N. Thompson, and B. A. Federici (eds.). Parasites and Pathogens of Insects Vol. 1. Academic Press, San Diego.

    Google Scholar 

  • Janssen, A. 1999. Plants with spider-mite prey attract more predatory mites than clean plants under greenhouse conditions. Entomol. Exp. Appl. 90:191–198.

    Google Scholar 

  • Janssen, A., Bruin, J., Jacobs, G., Schraag, R., and Sabelis, M. W. 1997. Predators use volatiles to avoid prey patches with conspecifics. J. Anim. Ecol. 66:223–232.

    Google Scholar 

  • Krips, O. E., Willems, P. E. L., Gols, R., Posthumus, M. A., and Dicke, M. 1999. The response of Phytoseiulus persimilis to spider-mite induced volatiles from gerbera: influence of starvation and experience. J. Chem. Ecol. 25:2623–2641.

    Google Scholar 

  • Lanier, G. N., and Burns, B. W. 1978. Effects on the responsiveness of bark beetles to aggregation attractants. J. Chem. Ecol. 4:139–147.

    Google Scholar 

  • Lewis, T. (ed.). 1984. Insect Communication. Academic Press, London, 414 pp.

    Google Scholar 

  • Lewis, W. J., Vet, L. E. M., Tumlinson, J. H., Van Lenteren, J. C., and Papaj, D. R. 1990. Variations in parasitoid foraging behavior: Essential element of a sound biological control theory. Environ. Entomol. 19:1183–1193.

    Google Scholar 

  • Margolies, D. C., Sabelis, M. W., and Boyer, J. E. 1997. Response of a phytoseiid predator to herbivore-induced plant volatiles: Selection on attraction and effect on prey exploitation. J. Insect Behav. 10:695–709.

    Google Scholar 

  • Nordlund, D. A., Jones, R. L., and Lewis, W. J. (eds.). 1981. Semiochemicals, Their Role in Pest Control. Wiley & Sons, New York, 306 pp.

    Google Scholar 

  • Price, P. W. 1981. Semiochemicals in evolutionary time, in D. A. Nordlund, R. L. Jones, and W. J. Lewis (eds.). Semiochemicals: Their Use in Pest Control, pp. 251–271, Wiley, New York.

    Google Scholar 

  • Sabelis, M. W., and Dicke, M., 1985. Long-range dispersal and searching behaviour, pp. 141–160, in W. Helle and M. W. Sabelis (eds.). Spider Mites. Their Biology, Natural Enemies and Control. World Crop Pests 1b. Elsevier, Amsterdam.

    Google Scholar 

  • Sabelis, M. W., and Van de Baan, H. E. 1983. Location of distant spider mite colonies by phytoseiid predators: demonstration of specific kairomones emitted by Tetranychus urticae and Panonychus ulmi. Entomol. Exp. Appl. 33:303–314.

    Google Scholar 

  • Sabelis, M. W., and Van der Meer, J. 1986. Local dynamics of the interaction between predatory mites and two-spotted spider mites, pp. 322–343, in J. A. J. Metz and O. Diekman (eds.). Dynamics of Physiologically Structured Populations. Springer Lecture Notes in Biomathematics 68.

  • Sabelis, M. W., Afman, B. P., and Slim, P. J. 1984. Location of distant spider mite colonies by Phytoseiulus persimilis: Location and extraction of a kairomone. Acarology VI 1:431–440.

    Google Scholar 

  • SchÜtte, C., Hulshof, J., Dijkman, H., and Dicke, M. 1995. Change in foraging behaviour of the predatory mite Phytoseiulus persimilis: Some characteristics of a mite population that does not respond to herbivore-induced synomones. Proc. Exp. Appl. Entomol. 6:133–139.

    Google Scholar 

  • SchÜtte, C., Baarlen, P. van, Dijkman, H., and Dicke, M. 1998. Change in foraging behaviour of the predatory mite Phytoseiulus persimilis after exposure to dead conspecifics and their products. Entomol. Exp. Appl. 88:295–300.

    Google Scholar 

  • Sokal, R. R., and Rohlf, F. J. 1981. Biometry. Freeman, New York, 859 pp.

    Google Scholar 

  • Steinberg, S., Dicke, M., Vet, L. E. M., and Wanningen, R. 1992. Response of the braconid parasitoid Cotesia (= Apanteles) glomerata to volatile infochemicals: effect of bioassay set-up, parasitoid age and experience and barometric flux. Entomol. Exp. Appl. 63:163–175.

    Google Scholar 

  • Steiner, M. Y. 1993a. Some observations on the quality of biological control organisms used in greenhouses. IOBC/WPRS Bull. 19(1):163–166.

    Google Scholar 

  • Steiner, M. Y. 1993b. Quality control requirements for pest biological control agents. Alberta Environmental Centre, Vegreville, Alberta, Canada. AECV93-R6. 112 pp.

    Google Scholar 

  • Sutakova, G. 1991. Rickettsiella phytoseiuli and its relation to mites and ticks, pp. 45–48, in F. Dusbabek and V. Bukva (eds.). Modern Acarology, Vol. 2. Academia, Prague.

    Google Scholar 

  • Sutakova, G., and Arutunyan, E. S. 1990. The spider mite predator Phytoseiulus persimilis and its association with microorganisms: an electron microscope study. Acta Entomol. Bohemoslov. 87:431–434.

    Google Scholar 

  • Takabayashi, J., and Dicke, M. 1992. Response of predatory mites with different rearing histories to volatiles of uninfested plants. Entomol. Exp. Appl. 64:187–193.

    Google Scholar 

  • Takabayashi, J., Dicke, M., and Posthumus, M. A. 1994. Volatile herbivore-induced terpenoids in plant-mite interactions: Variation caused by biotic and abiotic factors. J. Chem. Ecol. 20:1329–1354.

    Google Scholar 

  • Turlings, T. C. J., WÅckers, F. L., Vet, L. E. M., Lewis, W. J., and Tumlinson, J. H., 1993. Learning of host-finding cues by hymenopterous parasitoids, pp. 51–78, in D. R. Papaj and A. C. Lewis (eds.). Insect Learning. Chapman & Hall, New York.

    Google Scholar 

  • Van Lenteren, J. C., and Woets, J. 1988. Biological and integrated pest control in greenhouses. Annu. Rev. Entomol. 33:239–269.

    Google Scholar 

  • Van Lenteren, J. C., Roskam, M. M., and Timmer, R. 1997. Commercial mass production and pricing of organisms for biological control of pests in Europe. Biol. Control. 10:143–149.

    Google Scholar 

  • Vet, L. E. M., and Dicke, M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141–172.

    Google Scholar 

  • Vet, L. E. M., Lewis, W. J., Papaj, D. R., and Van Lenteren, J. C. 1990. A variable-response model for parasitoid foraging behavior. J. Insect Behav. 3:471–490.

    Google Scholar 

  • Vinson, S. B. 1976. Host selection by insect parasitoids. Annu. Rev. Entomol. 21:109–134.

    Google Scholar 

  • Zemek, R., and Nachman, G., 1999. Interactions in a tritrophic acarine predator-prey metapopulation system: prey location and distance moved by Phytoseiulus persimilis (Acari: Phytoseiidae). Exp. Appl. Acarol. 23:21–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dicke, M., Schütte, C. & Dijkman, H. Change in Behavioral Response to Herbivore-induced Plant Volatiles in a Predatory Mite Population. J Chem Ecol 26, 1497–1514 (2000). https://doi.org/10.1023/A:1005543910683

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005543910683

Navigation