Skip to main content
Log in

Geographic Distribution of Mitochondrial DNA Variations among Grivet (Cercopithecus aethiops aethiops) Populations in Central Ethiopia

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Since mitochondrial DNA (mtDNA) are maternally inherited without recombination, geographic distribution of mtDNA in semiterrestrial cercopithecines is considered to be influenced by female philopatry. I examined the effect of sex difference in migration patterns on geographic distribution in a habitat whose environment has changed frequently. I investigated ten groups (n = 77) of grivets (Cercopithecus aethiops aethiops) along a 600-km stretch of the Awash River, Ethiopia. I examined the mtDNA distribution among natural local populations whose nuclear variation was already shown to have a widely homogeneous distribution. RFLP analysis of whole mtDNA genome using 17 enzymes identified ten haplotypes in five clusters (haplogroups). Sequence divergence within haplogroups ranged from 0.17%–0.38%, while divergence between haplogroups ranged between 1.0%–2.5%. Haplogroups were distributed in blocks which ranged from 120–250 km along the Awash River. The haplotype distribution pattern of males indicated that they migrate between the boundaries of these blocks. Moreover, a clumped distribution pattern suggests the history of matrilineal distribution by group fission and geographic expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Avise, J. C. (1994). Molecular Markers, Natural History, and Evolution, Chapman and Hall, New York.

    Google Scholar 

  • Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A., and Sauders, N. C. (1987). Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Ann. Rev. Ecol. Syst. 18: 489-522.

    Google Scholar 

  • Avise, J. C., Joseph, E. N., and Arnold, J. (1984). Demographic influences on mitochondrial DNA lineage survivorship in animal populations. J. Mol. Evol. 20: 99-105.

    Google Scholar 

  • Cheney, D. L., and Seyfarth, R. M. (1983). Nonrandom dispersal in free-ranging vervet monkeys: Social and genetic consequences. Am. Nat. 122: 392-412.

    Google Scholar 

  • DeBry, R. W., and Slade, N. A. (1985). Cladistic analysis of restriction endonuclease cleavage maps within a maximum-likelihood framework. Syst. Zool., 34: 21-34.

    Google Scholar 

  • Dowling, T. F., Moritz, C., and Palmer, J. D. (1990). Nucleic acids. II. restriction site analysis. In Hillis, D. M., and Moritz, C. (eds.), Molecular Systematics, Sinauer, Sunderland, pp. 250-317.

    Google Scholar 

  • Gasse, F. A., Rognon, R., and Street, F. A. (1980). Quaternary history of the Afar and Ethiopian Rift lakes. In Williams, M. A. J., and Faure, H. (eds.), The Sahara and the Nile, A. A. Balkema, Rotterdam, pp. 361-400.

    Google Scholar 

  • Gasse, F. A., and Street, F. A. (1978). Late Quaternary lake-level fluctuations and environments of the Northern Rift Valley and Afar Region (Ethiopia and Djibouti). Palaeogeog. Palaeoclimatol. Palaeoecol. 24: 279-325.

    Google Scholar 

  • Grove, A. T., Street, F. A., and Goudie, A. S. (1975). Former lake levels and climatic change in the rift valley of southern Ethiopia. Geogrl. J. 141: 177-202.

    Google Scholar 

  • Hamilton, A. C. (1982). Environmental History of East Africa: A Study of the Quaternary, Academic Press, London.

    Google Scholar 

  • Hamilton, A. C. (1988). Guenon evolution and forest history. In Gautier-Hion, A., Bourliére, F., Gautier, J-P., and Kingdon, J. (eds.), A Primate Radiation: Evolutionary Biology of the African Guenons, Cambridge University Press, New York, pp. 13-34.

    Google Scholar 

  • Harihara, S., Saitou, N., Hirai, M., Aoto, N., Terao, K., Cho, F., Honjo, S., and Omoto, K. (1988). Differentiation of mitochondrial DNA types in Macaca fascicularis. Primates 29: 117-127.

    Google Scholar 

  • Hayasaka, K., Horai, S., Shotake, T., Nozawa, K., and Matsunaga, E. (1986). Mitochondrial DNA polymorphism in Japanese monkeys, Macaca fuscata. Jap. J. Genet. 61: 345-359.

    Google Scholar 

  • Hoelzer, G. A., Dittus, W. P. J., Ashley, M. V., and Melnick, D. J. (1994). The local distribution of highly divergent mitochondrial DNA haplotypes in toque macaques Macaca sinica at Polonnaruwa, Sri Lanka. Mol. Ecol. 3: 451-458.

    Google Scholar 

  • Kawamoto, Y., Ishida, T., Suzuki, J., Takenaka, O., and Varavudhi, P. (1989). A preliminary report on the genetic variations of crab-eating macaques in Thailand. Kyoto University Overseas Research Report of Studies on Asian Nonhuman Primates. (1988). 7: 94-103. Kyoto University Primate Research Institute.

    Google Scholar 

  • Kawamoto, Y., Ischak, T. M., and Supritna, J. (1984). Genetic variations within and between troops of the crab-eating macaque (Macaca fascicularis) on Sumatra, Java, Bali, Lombok, and Sumbawa, Indonesia. Primates 25: 131-159.

    Google Scholar 

  • Melnick, D. J., and Hoelzer, G. A. (1992). Differences in male and female macaque dispersal lead to contrasting distributions of nuclear and mitochondrial DNA variation. Int. J. Primatol. 13: 379-393.

    Google Scholar 

  • Melnick, D. J., and Hoelzer, G. A. (1993). What is mtDNA good for in the study of primate evolution? Evol. Anthropol. 2: 2-10.

    Google Scholar 

  • Melnick, D. J., and Hoelzer, G. A. (1996). The population genetic consequences of macaque social organisation and behaviour. In Fa, J. E., and Lindburg, D. (eds.), Evolution and Ecology of Macaque Societies. Cambridge University Press, New York, pp. 413-443.

    Google Scholar 

  • Melnick, D. A., Hoelzer, G. A., Absher, R., and Ashley, M. V. (1993). mtDNA diversity in rhesus monkeys reveals overestimates of divergence time and paraphyly with neighboring species. Mol. Biol. Evol. 10: 282-295.

    Google Scholar 

  • Moore, J. (1984). Female transfer in primates. Int. J. Primatol. 5: 537-589.

    Google Scholar 

  • Nei, M. (1987). Molecular Evolutionary Genetics, Columbia University Press, New York.

    Google Scholar 

  • Nei, M., and Tajima, F. (1983). Maximum likelihood estimation of the number of nucleotide substitutions from restriction site data. Genetics 105: 207-217.

    Google Scholar 

  • Neigel, J. E., and Avise, J. C. (1986). Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation. In Karlin, S., and Nevo, E. (eds.), Evolutionary Process and Theory, Academic Press, New York, pp. 515-534.

    Google Scholar 

  • Nozawa, K., Shotake, T., Minezawa, M., Kawamoto, Y., Hayasaka, K., Kawamoto, S., and Ito, S. (1991). Population genetics of Japanese monkeys: III. Ancestry and differentiation of local populations. Primates 32: 411-435.

    Google Scholar 

  • Ota, T. (1994). RESTDATA: Restriction Data and Phylogenetic Analysis, Institute of Molecular Evolutionary Genetics, The Pennsylvania State University, University Park, PA.

    Google Scholar 

  • Pusey, A. E., and Packer, C. (1987). Dispersal and philopatry. In Smuts, B. B., Cheney, D. L., Seyfarth, R. M., Wrangham, R. W., and Struhsaker, T. T. (eds.), Primate Societies, University of Chicago Press, Chicago, pp. 250-266.

    Google Scholar 

  • Rosenblum, L. L., Supriatna, J., and Melnick, D. J. (1997). Phylogeographic analysis of pigtail macaque populations (Macaca nemestrina) inferred from mitochondrial DNA. Amer. J. Phys. Anthropol. 104: 35-45.

    Google Scholar 

  • Saitou, N., and Nei, M. (1987). The neighbor-joining method:Anew method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.

    Google Scholar 

  • Shimada, M. K., and Shotake, T. (1997). Genetic variation of blood proteins within and between local populations of grivet monkey (Cercopithecus aethiops aethiops) in central Ethiopia. Primates 38: 399-414.

    Google Scholar 

  • Shotake, T., Nozawa, K., and Santiapilai, C. (1991). Genetic variability within and between the troops of toque macaque, Macaca sinica, in Sri Lanka. Primates 32: 283-299.

    Google Scholar 

  • Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503-517.

    Google Scholar 

  • Swofford, D. L. (1993). PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1.1, Computer program, Smithsonian Institution, Washington, DC.

    Google Scholar 

  • Swofford, D. L., and Olsen, G. J. (1990). Phylogeny reconstruction. In Hillis, D. M., and Moritz, C. (eds.), Molecular Systematics, Sinauer, Sunderland, pp. 411-501.

    Google Scholar 

  • Takenaka, O., Takenaka, A., Arakawa, M., Ishida, T., Suzuki, J., Kawamoto, Y., and Varavudhi, P. (1989). The multiple a-globin genes in the crab-eating macaques (Macaca fascicularis) and geographic distribution in Thailand. Kyoto University Overseas Research Report of Studies on Asian Nonhuman Primates. (1988) 7: 94-103. Kyoto Univ. Primate Res. Institute.

    Google Scholar 

  • Templeton, A. R. (1983). Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37: 221-244.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimada, M.K. Geographic Distribution of Mitochondrial DNA Variations among Grivet (Cercopithecus aethiops aethiops) Populations in Central Ethiopia. International Journal of Primatology 21, 113–129 (2000). https://doi.org/10.1023/A:1005479714606

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005479714606

Navigation