Skip to main content
Log in

Magnetic turbulence at the magnetopause, a key problem for understanding the solar wind/ magnetosphere exchanges

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

According to ideal MHD, the magnetopause boundary should split the terrestrial environment in two disconnected domains: outside, the solar wind (including its shocked part, the magnetosheath), and inside, the magnetosphere. This view is at variance with the experimental data, which show that the magnetopause is not tight and that a net transfer of matter exists from the solar wind to the magnetosphere; it implies that the frozen-in condition must break down on the magnetopause, either over the whole boundary or at some points. In the absence of ordinary collisions, only short scale phenomena (temporal and/or spatial) can be invoked to explain this breakdown, and the best candidates in this respect appear to be the ULF magnetic fluctuations which show very strong amplitudes in the vicinity of the magnetopause boundary. It has been shown that these fluctuations are likely to originate in the magnetosheath, probably downstream of the quasi-parallel shock region, and that they can get amplified by a propagation effect when crossing the magnetopause. When studying the propagation across the magnetopause boundary, several effects are to be taken into account simultaneously to get reliable results: the magnetopause density gradient, the temperature effects, and the magnetic field rotation can be introduced while remaining in the framework of ideal MHD. In these conditions, the magnetopause amplification has been interpreted in term of Alfvén and slow resonances occurring in the layer. When, in addition, one takes the ion inertia effects into account, by the way of the Hall-MHD equations, the result appears drastically different: no resonance occurs, but a strong Alfvén wave can be trapped in the boundary between the point where it is converted from the incident wave and the point where it stops propagating back, i.e., the point where k \|=0, which can exist thanks to the magnetic field rotation. This effect can bring about a new interpretation to the magnetopause transfers, since the Hall effect can allow reconnection near this particular point. The plasma transfer through the magnetopause could then be interpreted in terms of a reconnection mechanism directly driven by the magnetosheath turbulence, which is permanent, rather than due to any local instability of the boundary, for instance of the tearing type, which should be subject to an instability threshold and thus, as far as it exists, more sporadic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, B. J., Fuselier, S. A., and Murr, D.: 1991, ‘Electromagnetic Ion CyclotronWaves Observed in the Plasma Depletion Layer’, Geophys. Res. Lett. 18, 1955-1958.

    Google Scholar 

  • Anderson, R. R., Harvey, C. C., Hoppe, M. M., Tsurutani, B. T., Eastman, T. E., and Etcheto, J.: 1982, ‘Plasma Waves Near the Magnetopause’, J. Geophys. Res. 87, 2087-2107.

    Google Scholar 

  • Baumjohann, W. and Paschmann, G.: 1987, ‘Solar Wind-Magnetosphere Coupling: Processes and Observations’, Phys. Scripta T18, 61-72.

    Google Scholar 

  • Belmont, G. and Chanteur, G.: 1989, ‘Kelvin-Helmholtz Instability: Non-Linear Evolution’, Turbulence and Nonlinear Dynamics in MHD Flows, Cargèse Workshop, pp. 69-74.

  • Belmont, G., Reberac, F., and Rezeau, L.: 1995, ‘Resonant Amplification of Magnetosheath MHD Fluctuations at the Magnetopause’, Geophys. Res. Lett. 22, 295-298.

    Google Scholar 

  • Belmont, G. and Rezeau, L.: ‘Magnetopause reconnection induced by magnetosheath Hall-MHD fluctuations’, J. Geophys. Res., (submitted).

  • Bhattacharjee, A., Ma, Z. W., and Wang, Xiaogan: 1999, ‘Impulsive Reconnection Dynamics in Collisionless Laboratory and Space Plasmas’, J. Geophys. Res. 104, 14543-14556.

    Google Scholar 

  • Cornilleau-Wehrlin, N., Chauveau, P., Louis, S., Meyer, A., Nappa, J. M., Perraut, S., Rezeau, L., Robert, P., Roux, A., de Villedary, C., de Conchy, Y., Friel, L., Harvey, C. C., Hubert, D., Lacombe, C., Manning, R., Wouters, F., Lefeuvre, F., Parrot, M., Pinçon, J. L., Poirier, B., Kofman, W., and Louarn, P.: 1997, ‘The CLUSTER Spatio-Temporal Analysis of Field Fluctuations (STAFF) Experiment’, Space Sci. Rev. 79 (1-2), 107-136.

    Google Scholar 

  • Cowley, S.W. H.: 1995, ‘The Earth'sMagnetosphere: A Brief Beginner's Guide’, EOS 76, 525-529.

    Google Scholar 

  • De Keyser, J., Roth, M., Reberac, F., Rezeau, L., and Belmont, G.: 1999, ‘Resonant Amplification of MHD Waves in Realistic Subsolar Magnetopause Configurations’, J. Geophys. Res. 104, 2399.

    Google Scholar 

  • Dungey, J. W.: 1961: ‘Interplanetary Magnetic Field and the Auroral Zones’, Phys. Rev. Lett. 6, 47-48.

    Google Scholar 

  • Ecoubet, C. P., Scmidt, R., and Goldstein, M. L.: 1997, ‘Cluster-Science and Mission Overview’, Space Sci. Rev. 79 (1-2), 107-136.

  • Galeev, A. A., Kuznetsova, M. M., and Zeleny, L. M.: 1986, ‘Magnetopause Stability Threshold for Patchy Reconnection’, Space Sci. Rev. 44, 1-41.

    Google Scholar 

  • Gendrin, R.: 1983, ‘Magnetic Turbulence and Diffusion Processes in the Magnetopause Boundary Layer’, Geophys. Res. Lett. 10, 769-771.

    Google Scholar 

  • Gurnett, D. A., Anderson, R. R., Tsurutani, B. T., Smith, E. J., Paschmann, G., Haerendel, G., Bame, S. J., and Russell, C. T.: 1979, ‘Plasma Wave Turbulence at the Magnetopause: Observations from ISEE 1 and 2’,J. Geophys. Res. 84, 7043-7058.

    Google Scholar 

  • Hasegawa, A.: 1975 ‘Plasma Instabilities and Non-Linear Effects’, Springer New York

  • Johnson, J. R. and Cheng, C. Z.: 1997, ‘Kinetic Alfvén Waves and Plasma Transport at the Magnetopause’, Geophys. Res. Lett. 24, 1423-1426.

    Google Scholar 

  • Lepping, R. P. and Burlaga, L. F.: 1979, ‘Geomagnetopause Surface Fluctuations Observed by Voyager 1’, J. Geophys. Res. 84, 7099-7106.

    Google Scholar 

  • Miura, A.: 1982, ‘Nonlinear Evolution of the Magnetohydrodynamic Kelvin-Helmholtz Instability’, Phys. Rev. Lett. 49, 779.

    Google Scholar 

  • Perraut, S., Gendrin, R., Robert, P., and Roux, A.: 1979, ‘Magnetic Pulsations Observed Onboard GEOS 2 in the ULF Range During Multiple Magnetopause Crossings’, Proceed. of Magnetospheric Boundary Layer Conference, Alpbach, June 1979, ESA/SP-148, 113-122.

    Google Scholar 

  • Phan, T. D., Paschmann, G., Baumjohann, W., and Sckopke, N.: 1994, ‘The Magnetosheath Region Adjacent to the Dayside Magnetopause: AMPTE/IRM Observations’, J. Geophys. Res. 99, 121-141.

    Google Scholar 

  • Pu, Z. Y. and Kivelson, M. G.: 1983, ‘Kelvin-Helmholtz Instability at the Magnetopause: Solution for Compressible Plasmas’, J. Geophys. Res. 88, 841-852.

    Google Scholar 

  • Reberac, F.: 1998, thesis, Université Paris-7.

  • Rezeau, L., Morane, A., Perraut, S., Roux, A., and Schmidt, R.: 1989, ‘Characterization of Alfvénic Fluctuations in the Magnetopause Boundary Layer’, J. Geophys. Res. 94, 101-110.

    Google Scholar 

  • Rezeau, L., Roux, A., and Russell, C. T.: 1992, ‘Can ULF Fluctuations Observed at the Magnetopause Play a Role in Anomalous Diffusion?’, Proceedings of the 26th ESLAB Symposium on 'Study of the Solar-Terrestrial System', ESA SP-346, pp. 127-131.

    Google Scholar 

  • Rezeau, L., Belmont, G., and Reberac, F.: 1998, ‘Detection of Localised Structures from Multispacecraft Data: Adaptive Correlation Function’, J. Geophys. Res. 103, 2319-2325.

    Google Scholar 

  • Rezeau, L., Belmont, G., Briand, C., Cornilleau-Wehrlin, N., and Reberac, F.: 1999, ‘Spectral Law and Polarization Properties of the Low Frequency Waves at the Magnetopause’, Geophys. Res. Lett. 26, 651-654.

    Google Scholar 

  • Song, P., Russell, C. T., and Huang, C. Y.: 1993, ‘Wave Properties Near the Subsolar Magnetopause: Pc 1 Waves in the Sheath Transition Layer’, J. Geophys. Res. 98, 5907-5923.

    Google Scholar 

  • Sonnerup, B. U. Ö.: 1980, ‘Theory of the Low-Latitude Boundary Layer’, J. Geophys. Res. 85, 2017-2026.

    Google Scholar 

  • Tsurutani, B. T. and Thorne, R. M.: 1982, ‘Diffusion Processes in the Magnetopause Boundary Layer’, Geophys. Res. Lett. 9, 1247-1250.

    Google Scholar 

  • Uberoi, C., Lanzerotti, L. J., and Wolfe, A.: 1996, ‘Surface Waves and Magnetic Reconnection at a Magnetopause’, J. Geophys. Res. 101, 24979-24983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezeau, L., Belmont, G. Magnetic turbulence at the magnetopause, a key problem for understanding the solar wind/ magnetosphere exchanges. Space Science Reviews 95, 427–441 (2001). https://doi.org/10.1023/A:1005273124854

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005273124854

Keywords

Navigation