Skip to main content
Log in

MHD simulations of the Kelvin-Helmholtz instability near the ionopause of Venus across a range of density ratios and magnetic Reynolds numbers

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The Kelvin–Helmholtz instability on the ionopause of Venus with different density ratios and magnetic Reynolds numbers has been simulated numerically by using the magnetohydrodynamics equations. For the special case of a Venus-like planet, the plasma density increases from the magnetosheath to the ionosphere. The numerical simulation shows that the density increasing toward the planet has more important effects than the magnetic Reynolds number on the Kelvin–Helmholtz instability. And during the evolution of the Kelvin–Helmholtz instability, there are three different phases, the linear growth phase, followed by a nonlinear phase with vortex-like structure, and finally, the turbulent phase. During the nonlinear evolution of the Kelvin–Helmholtz instability, the spatial scale of the vortex has a width of about \(\sim 12a\), where \(a\) is the half width of the shear layer located at the Venusian ionopause. For each phase, the vorticity of the system also has different characteristics. Supersonic flow could appear at the position where the vorticity is stronger in both nonlinear and turbulent phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amerstorfer, U.V., Erkaev, N.V., Langmayr, D., Biernat, H.K.: Planet. Space Sci. 55, 1811–1816 (2007)

    Article  ADS  Google Scholar 

  • Amerstorfer, U.V., Erkaev, N.V., Tauhenschuss, U., Biernat, H.K.: Phys. Plasmas 17, 072901 (2010)

    Article  ADS  Google Scholar 

  • Brace, L.H., Theis, R.F., Hoegy, W.R.: Planet. Space Sci. 30, 29 (1982)

    Article  ADS  Google Scholar 

  • Carvalho, J., Pires, N.: Astrophys. Space Sci. 122, 193–199 (1986)

    Article  ADS  Google Scholar 

  • Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press, New York (1961)

    MATH  Google Scholar 

  • De Zeeuw, D.L., Nagy, A.F., Gombosi, T.I., Powell, K.G., Luhmann, J.G.: J. Geophys. Res.: Planets 101, 4547–4556 (1996)

    Article  ADS  Google Scholar 

  • Elphic, R.C., Ershkovich, A.I.: J. Geophys. Res. 89, 997 (1984)

    Article  ADS  Google Scholar 

  • Howson, T.A., De Moortel, I., Antolin, P.: Astronomy & Astrophysics 602, A74 (2017)

    Article  Google Scholar 

  • Lee, H.G., Kim, J.: Eur. J. Mech. B, Fluids 49, 77–88 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Kallio, E., Jarvinen, R., Janhunen, P.: Planet. Space Sci. 54, 1472–1481 (2006)

    Article  ADS  Google Scholar 

  • Kent, G.I., Norman, C.J., Francis, F.C.: Phys. Fluids 12, 2140 (1969)

    Article  ADS  Google Scholar 

  • Lu, H.Y., Cao, J.B., Zhang, T.L., Fu, H.S., Ge, Y.S.: Phys. Plasmas 22, 062902 (2015)

    Article  ADS  Google Scholar 

  • Lundin, R., Barabash, S., Futaana, Y., Sauvaud, J.-A., Fedorov, A., Perez-de-Tejada, H.: Icarus 215, 751–785 (2011)

    Article  ADS  Google Scholar 

  • Ma, Y.J., Nagy, A.F., Russell, C.T., Strangeway, R.J., Wei, H.Y., Toth, G.: J. Geophys. Res. Space Phys. 118, 321–330 (2013)

    Article  ADS  Google Scholar 

  • MöStl, U.V., Erkaev, N.V., Zellinger, M., et al.: Icarus 216, 476–484 (2011)

    Article  ADS  Google Scholar 

  • Northrop, T.G.: Phys. Rev. 103, 1150 (1956)

    Article  ADS  Google Scholar 

  • Pope, S.A., Balikhin, M.A., Zhang, T.L., Fedorov, A.O., Gedalin, M., Barabash, S.: Geophys. Res. Lett. 36, L07202 (2009)

    Article  ADS  Google Scholar 

  • Terada, N., Machida, S., Shinagawa, H.: J. Geophys. Res. 107, 1471 (2002)

    Article  Google Scholar 

  • Thomas, V.A., Winske, D.: Geophys. Res. Lett. 18, 1943 (1991)

    Article  ADS  Google Scholar 

  • Vech, D., Stenberg, G., Nilsson, H., Edberg, N.J.T., Opitz, A., Szegó, K., et al.: J. Geophys. Res. Space Phys. 121, 3951–3962 (2016)

    Article  ADS  Google Scholar 

  • Wang, L.F., Xue, C., Ye, W.H., Li, Y.J.: Phys. Plasmas 16, 112104 (2009)

    Article  ADS  Google Scholar 

  • Wang, L.F., Ye, W.H., Don, W.S., Sheng, Z.M., Li, Y.J., He, Y.T.: Phys. Plasmas 17, 042103 (2010)

    Article  ADS  Google Scholar 

  • Wolff, R.S., Goldstein, B.E., Yeates, C.M.: J. Geophys. Res. 85, 7697 (1980)

    Article  ADS  Google Scholar 

  • Zellinger, M., Mostl, U.V., Erkaev, N.V., Biernat, H.K.: Phys. Plasmas 19, 022104 (2012)

    Article  ADS  Google Scholar 

  • Zhang, T.L., Baumjohann, W., Delva, M., Auster, H.-U., Balogh, A., Russell, C.T., Barabash, S., Balikhin, M., Berghofer, G., Biernat, H.K., Lammer, H., Lichtenegger, H., Magnes, W., Nakamura, R., Penz, T., Schwingenschuh, K., Vörös, Z., Zambelli, W., Fornacon, K.-H., Glassmeier, K.-H., Richter, I., Carr, C., Kudela, K., Shi, J.K., Zhao, H., Motschmann, U., Lebreton, J.-P.: Planet. Space Sci. 54, 1336–1343 (2006)

    Article  ADS  Google Scholar 

  • Zhang, T.L., Delva, M., Baumjohann, W., Volwerk, M., Russell, C.T., Barabash, S., Balikhin, M., Pope, S., Glassmeier, K.-H., Wang, C., Kudela, K.: Planet. Space Sci. 56, 790–795 (2008)

    Article  ADS  Google Scholar 

  • Zhang, T.L., Delva, M., Baumjohann, W., Volwerk, M., Russell, C.T., Wei, H.Y., Wang, C., Balikhin, M., Barabash, S., Auster, H.U., Kudela, K.: J. Geophys. Res. 113, E00B20 (2008)

    ADS  Google Scholar 

  • Zhang, T.L., Du, J., Ma, Y.J., Lammer, H., Baumjohann, W., Wang, C., et al.: Geophys. Res. Lett. 36, 146–158 (2009)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grants No.11965019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, Xl., Li, Xm. et al. MHD simulations of the Kelvin-Helmholtz instability near the ionopause of Venus across a range of density ratios and magnetic Reynolds numbers. Astrophys Space Sci 366, 77 (2021). https://doi.org/10.1007/s10509-021-03984-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-021-03984-w

Keywords

Navigation