Skip to main content
Log in

Realistic Solar Convection Simulations

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We report on realistic simulations of solar surface convection that are essentially parameter-free, but include detailed physics in the equation of state and radiative energy exchange. The simulation results are compared quantitatively with observations. Excellent agreement is obtained for the distribution of the emergent continuum intensity, the profiles of weak photospheric lines, the p-mode frequencies, the asymmetrical shape of the mode velocity and intensity spectra, the p-mode excitation rate, and the depth of the convection zone. We describe how solar convection is non-local. It is driven from a thin surface thermal boundary layer where radiative cooling produces low entropy gas which forms the cores of the downdrafts in which most of the buoyancy work occurs. Turbulence and vorticity are mostly confined to the intergranular lanes and underlying downdrafts. Finally, we present some preliminary results on magneto-convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basu, S. and Antia, H. M.: 1997, Monthly Notices Royal Astron. Soc. 287, 189.

    Google Scholar 

  • Bercik, D. J., Basu, S., Georgobiani, D., Nordlund, A., and Stein, R. F.: 1998, Solar Magneto-Convection. Astronomical Society of the Pacific Conference Series. San Francisco, p. CD568.

  • Boris, J. P.: 1989, in J. L. Lumley (ed.), Whither Turbulence? Turbulence at the Crossroads, Berlin, p. 344.

  • Brummell, N. H., Hurlburt, N. E., and Toomre, J.: 1996, Astrophys. J. 473, 494.

    Google Scholar 

  • Cattaneo, F.: 1999, Astrophys. J. 515, L39.

    Google Scholar 

  • Cattaneo, F., Brummell, N. H., Toomre, J., Malagoli, A., and Hurlburt, N. E.: 1991, Astrophys. J. 370, 282.

    Google Scholar 

  • Chan, K. L. and Sofia, S.: 1989, Astrophys. J. 336, 1022.

    Google Scholar 

  • Däppen, W., Mihalas, D., Hummer, D. G., and Mihalas, B. W.: 1988, Astrophys. J. 332, 261.

    Google Scholar 

  • Duvall, T. L., Jefferies, S. M., Harvey, J. W., Osaki, Y., and Pomerantz, M. A.: 1993, Astrophys. J. 410, 829.

    Google Scholar 

  • Elliott, J. R., Miesch, M. S., Toomre, J., Cluney, T. C., and Glatzmaier, G. A.: 1998, Turbulent Solar Convection and its Coupling with Rotation. Structure and Dynamics of the Interior of the Sun and Sun-like Stars, p. E168.

  • Freytag, B., Ludwig, H.-G., and Steffen, M.: 1996, Astron. Astrophys. 313, 497.

    Google Scholar 

  • Georgobiani, D., Kosovichev, A., Nigam, R. G., Stein, R. F., and Nordlund, A.: 2000, Astrophys. J. 530, L139.

    Google Scholar 

  • Hummer, D. G. and Mihalas, D.: 1988, Astrophys. J. 331, 794.

    Google Scholar 

  • Hurlburt, N. E., Matthews, P. C., and Proctor, M. R. E.: 1996, Astrophys. J. 457, 933.

    Google Scholar 

  • Kumar, P. and Basu, S.: 1999, Astrophys. J. 519, 389.

    Google Scholar 

  • Mihalas, D., Däppen, W., and Hummer, D. G.: 1988, Astrophys. J. 331, 815.

    Google Scholar 

  • Mihalas, D., Hummer, D. G., Mihalas, B. W., and Däppen, W.: 1990, Astrophys. J. 350, 300.

    Google Scholar 

  • Nigam, R., Kosovichev, A. G., Scherrer, P. H., and Schou, J.: 1998, Astrophys. J. 495, L115.

    Google Scholar 

  • Nordlund, Å.: 1982, Astron. Astrophys. 107, 1.

    Google Scholar 

  • Nordlund, Å.: 1985, Solar Phys. 100, 209.

    Google Scholar 

  • Nordlund, Å. and Stein, R. F.: 1989, in R. Rutten and G. Severino (eds.), Solar and Stellar Granulation, Kluwer Academic Publishers, Dordrecht, Holland, p. 453.

    Google Scholar 

  • Nordlund, Å. and Stein, R. F.: 1990, Computer Phys. Communications 59, 119.

    Google Scholar 

  • Nordlund, Å. and Stein, R. F.: 1991, in L. Crivellari, I. Hubeny, and D. G. Hummer (eds.), Stellar Atmospheres - Beyond Classical Models, p. 263.

  • Nordlund, Å. and Stein, R. F.: 2000, Astrophys. J. (submitted).

  • Porter, D. H. and Woodward, P. R.: 1994, Astrophys. J. 93, 309.

    Google Scholar 

  • Porter, D. H., Pouguet, A., and Woodward, P. R.: 1992, Phys. Rev. Lett. 68, 3156.

    Google Scholar 

  • Rast, M. P. and Bogdan, T. J.: 1998, Astrophys. J. 496, 527.

    Google Scholar 

  • Roca Cortes, T., Montanes, P., Palle, P. L., Perez Hernandez, F., Jimenez, A., Regula, C., and the GOLF Team: 1999, in A. Jimenez, E. Guinan, and B. Montesinos (eds.), Theory and Tests of Convective Energy Transport, Vol. 173, ASP Conf. Ser., p. 305.

  • Rogallo, R. S. and Moin, P.: 1984, Ann. Rev. Fluid Mech. 16, 99.

    Google Scholar 

  • Rosenthal, C. S., Christensen-Dalsgaard, J., Kosovichev, A. G., Nordlund, A. A., Reiter, J., Rhodes, J., Schou, E. J. J., Stein, R. F., and Trampedach, R.: 1998, in SOHO 6/GONG 98: Structure and Dynamics of the Interior of the Sun and Sun-like Stars, p. 521.

  • Rosenthal, C. S., Christensen-Dalsgaard, J., Nordlund, A., Stein, R. F., and Trampedach, R.: 1999, Astron. Astrophys. 351, 689.

    Google Scholar 

  • Stein, R. F. and Nordlund, Å: 1991, in D. Gough and J. Toomre (eds.), Challenges to Theories of the Structure of Moderate Mass Stars, Vol. 388 Lecture Notes in Physics, p. 195.

  • Stein, R. F. and Nordlund, Å.: 1998, Astrophys. J. 499, 914.

    Google Scholar 

  • Weiss, N. O., Brownjohn, D. P., Matthews, P. C., and Proctor, M. R. E.: 1996, Monthly Notices Royal Astron. Soc. 283, 1153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, R.F., Nordlund, Å. Realistic Solar Convection Simulations. Solar Physics 192, 91–108 (2000). https://doi.org/10.1023/A:1005260918443

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005260918443

Keywords

Navigation