Skip to main content
Log in

Stochastic and Reduced Biophysical Models of Synaptic Transmission

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Stochastic and reduced biophysical models of synaptictransmission are formulated and evaluated. Thesynaptic transmission involves presynapticfacilitation of neurotransmitter release, depletionand recovery of the presynaptic pool of readilyreleasable vesicles containing neurotransmittermolecules and saturation of postsynaptic receptors ofboth fast non-NMDA and slow NMDA types. The models areshown to display the principal dynamicalcharacteristics experimentally observed of synaptictransmission. The two main types of neural coding,i.e. rate and temporal coding, can be distinguished bymeans of different dynamical properties of synaptictransmission determined by initial neurotransmitterrelease probability and presynaptic firing rate. Fromthe temporal evolution of the postsynaptic membranepotential response to a train of presynaptic actionpotentials at a sustained firing rate, in particularthe steady-state amplitude and steady-state averagelevel of postsynaptic membrane potentials aredetermined as functions of both initial releaseprobability and presynaptic firing rate. The modelsare applicable to studies of the primary stages oflearning processes and can be extended to incorporateshort-term and long-term potentiation in memoryconsolidation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Magleby, K.L.: Short-term changes in synaptic efficacy, In: G.M. Edelman, V.E. Gall and K.M. Cowan (eds.), Synaptic Function, John Wiley and Sons, New York, 1987, pp. 21-56.

    Google Scholar 

  2. Zucker, R.S.: Short-term synaptic plasticity, Annu. Rev. Neurosci. 12 (1989), 13-31.

    Google Scholar 

  3. Betz, W.J.: Depression of transmitter release at the neuromuscular junction of the frog, J. Physiol. 206 (1970), 629-644.

    Google Scholar 

  4. Kusano, K. and Landau, E.M.: Depression and recovery of transmission at the squid giant synapse, J. Physiol. 245 (1975), 13-32.

    Google Scholar 

  5. Larkman, A., Stratford, K. and Jack, J.: Quantal analysis of excitatory synaptic action and depression in hippocampal slices, Nature, 350 (1991), 344-347.

    Google Scholar 

  6. Clements, J.D.: Transmitter timecourse in the synaptic cleft: its role in central synaptic function, Trends Neurosci. 19 (1996), 163-171.

    Google Scholar 

  7. Malenka, R.C.: Synaptic plasticity in the hippocampus: LTP and LTD, Cell 78 (1994), 535-538.

    Google Scholar 

  8. Huang, Y.-Y., Nguyen, P.V., Abel, T. and Kandel, E.R.: Long-lasting forms of synaptic potentiation in the hippocampus, Learning Mem. 3 (1996), 74-85.

    Google Scholar 

  9. Katz, B. and Miledi, R.: The effect of calcium on acetylcholine release from motor nerve terminals, Proc. R. Soc. B 161 (1965), 496-503.

    Google Scholar 

  10. Dodge Jr., F.A. and Rahamimoff, R.: Co-operative action of calcium ions in transmitter release at the neuromuscular junction, J. Physiol., 193 (1967), 419-432.

    Google Scholar 

  11. Katz, B. and Miledi, R.: The role of calcium in neuromuscular facilitation, J. Physiol. 195 (1968), 481-492.

    Google Scholar 

  12. Swandulla, D., Hans, M., Zipser, K. and Augustine, G.J.: Role of residual calcium in synaptic depression and posttetanic potentiation: fast and slow calcium signaling in nerve terminals, Neuron 7 (1991), 915-926.

    Google Scholar 

  13. Regehr, W.G., Delaney, K.R. and Tank, D.W.: The role of presynaptic calcium in short-term enhancement at the hippocampal mossy fiber synapse, J. Neurosci. 14 (1994), 523-537.

    Google Scholar 

  14. Linial, M. and Parnas, D.: Deciphering neuronal secretion: tools of the trade, Biochim. Biophys. Acta 1286 (1996), 117-152.

    Google Scholar 

  15. Stevens, C.F. and Wang, Y.: Facilitation and depression at single synapses, Neuron 14 (1995), 795-802.

    Google Scholar 

  16. Murthy, V.N., Sejnowski, T.J. and Stevens, C.F.: Heterogeneous release properties of visualized individual hippocampal synapses, Neuron 18 (1997), 599-612.

    Google Scholar 

  17. Dobrunz, L.E. and Stevens, C.F.: Heterogeneity of release probability, facilitation, and depletion at central synpases, Neuron 18 (1997), 995-1008.

    Google Scholar 

  18. Debanne, D., Guérineau, N.C., Gähwiler, B.H. and Thompson, S.M.: Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release J. Physiol. 491 (1996), 163-176.

    Google Scholar 

  19. Markram, H. and Tsodyks, M.: Redistribution of synaptic efficacy between neocortical pyramidal neurons, Nature 382 (1996), 807-810.

    Google Scholar 

  20. Tsodyks, M.V. and Markram, H.: The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability, Proc. Natl. Acad. Sci. U.S.A. 94 (1997), 719-723.

    Google Scholar 

  21. Markram, H., Wang, Y. and Tsodyks, M.: Differential signaling via the same axon of neocortical pyramidal neurons, Proc. Natl. Acad. Sci. U.S.A. 95 (1998), 5323-5328.

    Google Scholar 

  22. Abbott, L.F., Varela, J.A., Sen, K. and Nelson S.B.: Synaptic depression and cortical gain control, Science 275 (1997), 220-224.

    Google Scholar 

  23. Nelson, S.B., Varela, J.A., Sen, K. and Abbott, L.F.: Functional significance of synaptic depression between cortical neurons, In: J.M. Bower (ed.), Computational Neuroscience, Plenum Press, New York, 1997, pp. 429-434.

    Google Scholar 

  24. Varela, J.A., Sen, K., Fost, J., Abbott, L.F. and Nelson, S.B.: A quantitative description of shortterm plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex, J. Neurosci. 17 (1997), 7926-7940.

    Google Scholar 

  25. Ravin, R., Spira, M.E., Parnas, H. and Parnas, I.: Simultaneous measurement of intracellular Ca2+ and asynchronous transmitter release from the same crayfish bouton, J. Physiol. 501 (1997), 251-262.

    Google Scholar 

  26. Hille, B.: Ionic Channels of Excitable Membranes, Sinauer, Sunderland, 1992.

    Google Scholar 

  27. Cartling, B.: A generalized neuronal activation function derived from ion-channel characteristics, Network 6 (1995), 389-401.

    Google Scholar 

  28. Cartling, B.: Response characteristics of a low-dimensional model neuron, Neural Comput. 8 (1996), 1643-1652.

    Google Scholar 

  29. Cartling, B.: A low-dimensional, time-resolved and adapting model neuron, Int. J. Neural Syst. 7 (1996), 237-246.

    Google Scholar 

  30. Cartling, B.: Control of computational dynamics of coupled integrate-and-fire neurons, Biol. Cybern. 76 (1997), 383-395.

    Google Scholar 

  31. Rosenmund, C. and Stevens, C.F.: Definition of the readily releasable pool of vesicles at hippocampal synapses, Neuron 16 (1996), 1197-1207.

    Google Scholar 

  32. McCormick, D.A., Connors, B.W., Lighthall, J.W. and Prince, D.A.: Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex, J. Neurophysiol. 54 (1985), 780-806.

    Google Scholar 

  33. Connors, B.W. and Gutnick, M.J.: Intrinsic firing patterns of diverse neocortical neurons, Trends Neurosci. 13 (1990), 99-104.

    Google Scholar 

  34. Ekeberg, Ö., Wallén, P., Lansner, A., Tråvén, H., Brodin, L. and Grillner, S.: A computer based model for realistic simulations of neural networks I: the single neuron and synaptic interaction, Biol. Cybern. 65 (1991), 81-90.

    Google Scholar 

  35. Fransén, E. and Lansner, A.: A model of cortical associative memory based on a horizontal network of connected columns, Network 9 (1998), 235-264.

    Google Scholar 

  36. Yamada, W., Koch, C. and Adams, P.R.: Multiple channels and calcium dynamics, In: C. Koch and I. Segev (eds.), Methods in Neuronal Modeling. From Synapses to Networks, MIT Press, Cambridge, 1989, pp. 97-133.

    Google Scholar 

  37. Markram, H., Lübke, J., Frotscher, M., Roth, A. and Sakmann, B.: Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex, J. Physiol. 500 (1997), 409-440.

    Google Scholar 

  38. Parnas, H. and Segel, L.A.: A theoretical study of calcium entry in nerve terminals, with application to neurotransmitter release, J. Theoret. Biol. 91 (1981), 125-169.

    Google Scholar 

  39. Mallart, A. and Martin, A.R.: An analysis of facilitation of transmitter release at the neuromuscular junction of the frog, J. Physiol. 193 (1967), 679-694.

    Google Scholar 

  40. Zengel, J.E. and Magleby, K.L.: Augmentation and facilitation of transmitter release. A quantitative description at the frog neuromuscular junction, J. Gen. Physiol. 80 (1982), 583-611.

    Google Scholar 

  41. Thomson, A.M. and Radpour, S.: Excitatory connections between CA1 pyramidal cells revealed by spike triggered averaging in slices of rat hippocampus are partially NMDA receptor mediated, Eur. J. Neurosci. 3 (1991), 587-601.

    Google Scholar 

  42. Asztely, F., Wigström, H. and Gustafsson, B.: The relative contribution of NMDA receptor channels in the expression of long-term potentiation in the hippocampal CA1 region, Eur. J. Neurosci. 4 (1992), 681-690.

    Google Scholar 

  43. Fischer, T.M., Blazis, D.E.J., Priver, N.A. and Carew, T.J.: Metaplasticity at identified inhibitory synapses in Aplysia, Nature 389 (1997), 860-865.

    Google Scholar 

  44. Fossier, P., Tauc, L. and Baux, G.: Calcium transients and neurotransmitter release at an identified synapse, Trends Neurosci., 22 (1999), 161-166.

    Google Scholar 

  45. Cartling, B.: Control of the complexity of associative memory dynamics by neuronal adaptation, Int. J. Neural Syst. 4 (1993), 129-141.

    Google Scholar 

  46. Cartling, B.: Autonomous neuromodulatory control of associative processes, Network 6 (1995), 247-260.

    Google Scholar 

  47. Cartling, B.: Control of resolution and perception in working memory, Behav. Brain Res. 100 (1999), 255-271.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cartling, B. Stochastic and Reduced Biophysical Models of Synaptic Transmission. Journal of Biological Physics 26, 113–131 (2000). https://doi.org/10.1023/A:1005223902152

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005223902152

Navigation