Skip to main content

Models of Short-Term Synaptic Plasticity

  • Chapter
  • First Online:
The Plastic Brain

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1015))

Abstract

We focus on dynamical descriptions of short-term synaptic plasticity. Instead of focusing on the molecular machinery that has been reviewed recently by several authors, we concentrate on the dynamics and functional significance of synaptic plasticity, and review some mathematical models that reproduce different properties of the dynamics of short term synaptic plasticity that have been observed experimentally. The complexity and shortcomings of these models point to the need of simple, yet physiologically meaningful models. We propose a simplified model to be tested in synapses displaying different types of short-term plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[Ca2+] i :

Intracellular Ca2+ concentration

ACh:

Acetylcholine

CB:

Calbindin

CCK:

Cholecystokinin

DA:

Dopamine

EPSC:

Excitatory postsynaptic current

EPSP:

Excitatory postsynaptic potential

GABA:

Gamma-aminobutyric acid

IPSC:

Inhibitory postsynaptic current

IPSP:

Inhibitory postsynaptic potential

LTS:

Low threshold spiking

LTSP:

Long terms synaptic plasticity

mEPSP:

Miniature excitatory postsynaptic potential

PV:

Parvalbumin SOM somatostatin

STB:

Short term biphasic plasticity

STD:

Short term depression

STF:

Short term facilitation

STSP:

Short term synaptic plasticity

References

  • Abbott L, Regehr WG (2004) Synaptic computation. Nature 431(7010):796–803

    Article  CAS  PubMed  Google Scholar 

  • Balaji J, Ryan T (2007) Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proc Natl Acad Sci U S A 104(51):20576–20581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barroso-Flores J, Herrera-Valdez MA, Lopez-Huerta VG, Galarraga E, Bargas J (2015) Diverse short-term dynamics of inhibitory synapses converging on striatal projection neurons: differential changes in a rodent model of parkinson’s disease. Neural Plast 2015:573543. doi:10.1155/2015/573543

    Article  PubMed  PubMed Central  Google Scholar 

  • Beierlein M, Gibson JR, Connors BW (2003) Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J Neurophysiol 90(5):2987–3000

    Article  PubMed  Google Scholar 

  • Blackman AV, Abrahamsson T, Costa RP, Lalanne T, Sjöström PJ (2013) Target cell-specific short-term plasticity in local circuits. Front Synaptic Neurosci 5:11. doi:10.3389/fnsyn.2013.00011

    Article  PubMed  PubMed Central  Google Scholar 

  • Blank PS, Vogel SS, Malley JD, Zimmerberg J (2001) A kinetic analysis of calcium-triggered exocytosis. J Gen Physiol 118(2):145–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bollmann JH, Sakmann B (2005) Control of synaptic strength and timing by the release-site Ca2+ signal. Nat Neurosci 8(4):426–434

    CAS  PubMed  Google Scholar 

  • Buonomano DV (2000) Decoding temporal information: a model based on short-term synaptic plasticity. J Neurosci 20(3):1129–1141

    CAS  PubMed  Google Scholar 

  • Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459(7247):663–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrillo-Reid L, Tecuapetla F, Ibáñez-Sandoval O, Hernández-Cruz A, Galarraga E, Bargas J (2009) Activation of the cholinergic system endows compositional properties to striatal cell assemblies. J Neurophysiol 101(2):737–749

    Article  CAS  PubMed  Google Scholar 

  • Clements JD (2003) Variance–mean analysis: a simple and reliable approach for investigating synaptic transmission and modulation. J Neurosci Methods 130(2):115–125

    Article  PubMed  Google Scholar 

  • Clements JD, Silver RA (2000) Unveiling synaptic plasticity: a new graphical and analytical approach. Trends Neurosci 23(3):105–113

    Article  CAS  PubMed  Google Scholar 

  • Dehorter N, Guigoni C, Lopez C, Hirsch J, Eusebio A, Ben-Ari Y, Hammond C (2009) Dopamine-deprived striatal gabaergic interneurons burst and generate repetitive gigantic ipscs in medium spiny neurons. J Neurosci 29(24):7776–7787

    Article  CAS  PubMed  Google Scholar 

  • Del Castillo J, Katz B (1954) Quantal components of the end-plate potential. J Physiol 124(3):560–573

    Article  PubMed Central  Google Scholar 

  • Dittman JS, Kreitzer AC, Regehr WG (2000) Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J Neurosci 20(4):1374–1385

    CAS  PubMed  Google Scholar 

  • Dutta Roy R, Stefan MI, Rosenmund C (2014) Biophysical properties of presynaptic short-term plasticity in hippocampal neurons: insights from electrophysiology, imaging and mechanistic models. Front Cell Neurosci 8:141. doi:10.3389/fncel.2014.00141

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher SA, Fischer TM, Carew TJ (1997) Multiple overlapping processes underlying short-term synaptic enhancement. Trends Neurosci 20(4):170–177

    Article  CAS  PubMed  Google Scholar 

  • Forsythe ID, Tsujimoto T, Barnes-Davies M, Cuttle MF, Takahashi T (1998) Inactivation of presynaptic calcium current contributes to synaptic depression at a fast central synapse. Neuron 20(4):797–807

    Article  CAS  PubMed  Google Scholar 

  • Fortune ES, Rose GJ (2000) Short-term synaptic plasticity contributes to the temporal filtering of electrosensory information. J Neurosci 20(18):7122–7130

    CAS  PubMed  Google Scholar 

  • Freund TF, Hájos N (2003) Excitement reduces inhibition via endocannabinoids. Neuron 38(3):362–365

    Article  CAS  PubMed  Google Scholar 

  • Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83(3):1017–1066

    Article  CAS  PubMed  Google Scholar 

  • Fukudome Y, Ohno-Shosaku T, Matsui M, Omori Y, Fukaya M, Tsubokawa H, Taketo MM, Watanabe M, Manabe T, Kano M (2004) Two distinct classes of muscarinic action on hippocampal inhibitory synapses: M2-mediated direct suppression and m1/m3-mediated indirect suppression through endocannabinoid signalling. Eur J Neurosci 19(10):2682–2692

    Article  PubMed  Google Scholar 

  • Fulton D, Condro MC, Pearce K, Glanzman DL (2008) The potential role of postsynaptic phospholipase c activity in synaptic facilitation and behavioral sensitization in aplysia. J Neurophysiol 100(1):108–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandhi SP, Stevens CF (2003) Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423(6940):607–613

    Article  CAS  PubMed  Google Scholar 

  • George AA, Lyons-Warren AM, Ma X, Carlson BA (2011) A diversity of synaptic filters are created by temporal summation of excitation and inhibition. J Neurosci 31(41):14721–14734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gittis AH, Nelson AB, Thwin MT, Palop JJ, Kreitzer AC (2010) Distinct roles of gabaergic interneurons in the regulation of striatal output pathways. J Neurosci 30(6):2223–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman MS, Maldonado P, Abbott L (2002) Redundancy reduction and sustained firing with stochastic depressing synapses. J Neurosci 22(2):584–591

    CAS  PubMed  Google Scholar 

  • Granseth B, Odermatt B, Royle SJ, Lagnado L (2006) Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51(6):773–786

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of gabaergic interneurons and synapses in the neocortex. Science 287(5451):273–278

    Article  CAS  PubMed  Google Scholar 

  • Guzmán JN, Hernández A, Galarraga E, Tapia D, Laville A, Vergara R, Aceves J, Bargas J (2003) Dopaminergic modulation of axon collaterals interconnecting spiny neurons of the rat striatum. J Neurosci 23(26):8931–8940

    PubMed  Google Scholar 

  • Hammond C, Bergman H, Brown P (2007) Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 30(7):357–364

    Article  CAS  PubMed  Google Scholar 

  • Hayut I, Fanselow EE, Connors BW, Golomb D (2011) Lts and fs inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics. PLoS Comput Biol 7(10):e1002248. doi:10.1371/journal.pcbi.1002248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennig MH (2013) Theoretical models of synaptic short term plasticity. Front Comput Neurosci 7:154. doi:10.3389/fncom.2013.00154

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández-Martínez R, Aceves JJ, Rueda-Orozco PE, Hernández-Flores T, Hernández-González O, Tapia D, Galarraga E, Bargas J (2015) Muscarinic presynaptic modulation in gabaergic pallidal synapses of the rat. J Neurophysiol 113(3):796–807

    Article  PubMed  Google Scholar 

  • Hoffman AF, Oz M, Caulder T, Lupica CR (2003) Functional tolerance and blockade of long-term depression at synapses in the nucleus accumbens after chronic cannabinoid exposure. J Neurosci 23(12):4815–4820

    CAS  PubMed  Google Scholar 

  • Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC (2003) Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci 26(3):161–167

    Article  CAS  PubMed  Google Scholar 

  • Katz B, Miledi R (1968) The role of calcium in neuromuscular facilitation. J Physiol 195(2):481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavalali ET (2007) Multiple vesicle recycling pathways in central synapses and their impact on neurotransmission. J Physiol 585(3):669–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321(5885):53–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopell N, Whittington M, Kramer M (2011) Neuronal assembly dynamics in the beta1 frequency range permits short-term memory. Proc Natl Acad Sci U S A 108(9):3779–3784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Körber C, Kuner T (2016) Molecular machines regulating the release probability of synaptic vesicles at the active zone. Front Synaptic Neurosci 8:5. doi:10.3389/fnsyn.2016.00005

    Article  PubMed  PubMed Central  Google Scholar 

  • Lange-Asschenfeldt C, Lohmann P, Riepe MW (2007) Hippocampal synaptic depression following spatial learning in a complex maze. Exp Neurol 203(2):481–485

    Article  PubMed  Google Scholar 

  • Liley A, North K (1953) An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction. J Neurophysiol 16(5):509–527

    CAS  PubMed  Google Scholar 

  • López-Murcia FJ, Royle SJ, Llobet A (2014) Presynaptic clathrin levels are a limiting factor for synaptic transmission. J Neurosci 34(25):8618–8629

    Article  PubMed  Google Scholar 

  • MacLeod KM (2011) Short-term synaptic plasticity and intensity coding. Hear Res 279(1):13–21

    Article  PubMed  PubMed Central  Google Scholar 

  • MacLeod KM, Horiuchi TK, Carr CE (2007) A role for short-term synaptic facilitation and depression in the processing of intensity information in the auditory brain stem. J Neurophysiol 97(4):2863–2874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magleby K (1979) Facilitation, augmentation, and potentiation of transmitter release. Prog Brain Res 49:175–182

    Article  CAS  PubMed  Google Scholar 

  • Magleby K, Zengel J (1982) A quantitative description of stimulation-induced changes in transmitter release at the frog neuromuscular junction. J Gen Physiol 80(4):613–638

    Article  CAS  PubMed  Google Scholar 

  • Mansvelder HD, Mertz M, Role LW (2009) Nicotinic modulation of synaptic transmission and plasticity in cortico-limbic circuits. Semin Cell Dev Biol 20(4):432–440. doi:10.1016/j.semcdb.2009.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marinesco S, Kolkman KE, Carew TJ (2004) Serotonergic modulation in aplysia. I Distributed serotonergic network persistently activated by sensitizing stimuli. J Neurophysiol 92(4):2468–2486

    Article  CAS  PubMed  Google Scholar 

  • Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci U S A 95(9):5323–5328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massi L, Lagler M, Hartwich K, Borhegyi Z, Somogyi P, Klausberger T (2012) Temporal dynamics of parvalbumin-expressing axo-axonic and basket cells in the rat medial prefrontal cortex in vivo. J Neurosci 32(46):16496–16502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNaughton BL, Douglas R, Goddard GV (1978) Synaptic enhancement in fascia dentata: cooperativity among coactive afferents. Brain Res 157(2):277–293

    Article  CAS  PubMed  Google Scholar 

  • Miguelez C, Morin S, Martinez A, Goillandeau M, Bezard E, Bioulac B, Baufreton J (2012) Altered pallido-pallidal synaptic transmission leads to aberrant firing of globus pallidus neurons in a rat model of parkinson’s disease. J Physiol 590(22):5861–5875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millar AG, Zucker RS, Ellis-Davies GC, Charlton MP, Atwood HL (2005) Calcium sensitivity of neurotransmitter release differs at phasic and tonic synapses. J Neurosci 25(12):3113–3125

    Article  CAS  PubMed  Google Scholar 

  • Mochida S, Few AP, Scheuer T, Catterall WA (2008) Regulation of presynaptic Ca(V)2.1 channels by Ca2+ sensor proteins mediates short-term synaptic plasticity. Neuron 57(2):210–216

    Article  CAS  PubMed  Google Scholar 

  • Morris RG (2003) Long-term potentiation and memory. Philos Trans R Soc B: Biol Sci 358(1432):643–647

    Article  Google Scholar 

  • Muller K, Nicholls J (1974) Different properties of synapses between a single sensory neurone and two different motor cells in the leech CNS. J Physiol 238(2):357–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neher E (2010) What is rate-limiting during sustained synaptic activity: vesicle supply or the availability of release sites. Front Synaptic Neurosci 2:144. doi:10.3389/fnsyn.2010.00144

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikolaev A, Leung KM, Odermatt B, Lagnado L (2013) Synaptic mechanisms of adaptation and sensitization in the retina. Nat Neurosci 16(7):934–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donovan MJ, Rinzel J (1997) Synaptic depression: a dynamic regulator of synaptic communication with varied functional roles. Trends Neurosci 20(10):431–433

    Article  PubMed  Google Scholar 

  • Ohno-Shosaku T, Kano M (2014) Endocannabinoid-mediated retrograde modulation of synaptic transmission. Curr Opin Neurobiol 29:1–8

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuki G, Piochon C, Hansel C (2009) Climbing fiber signaling and cerebellar gain control. Front Cell Neurosci 3:4. doi:10.3389/neuro.03.004.2009

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan B, Zucker RS (2009) A general model of synaptic transmission and short-term plasticity. Neuron 62(4):539–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Planert H, Szydlowski SN, Hjorth JJ, Grillner S, Silberberg G (2010) Dynamics of synaptic transmission between fast-spiking interneurons and striatal projection neurons of the direct and indirect pathways. J Neurosci 30(9):3499–3507

    Article  CAS  PubMed  Google Scholar 

  • Ravin R, Parnas H, Spira M, Volfovsky N, Parnas I (1999) Simultaneous measurement of evoked release and [Ca2+]i in a crayfish release bouton reveals high affinity of release to Ca2+. J Neurophysiol 81(2):634–642

    CAS  PubMed  Google Scholar 

  • Regehr WG, Delaney KR, Tank DW (1994) The role of presynaptic calcium in short-term enhancement at the hippocampal mossy fiber synapse. J Neurosci 14(2):523–537

    CAS  PubMed  Google Scholar 

  • Reyes A, Lujan R, Rozov A, Burnashev N, Somogyi P, Sakmann B (1998) Target-cell specific facilitation and depression in neocortical circuits. Nat Neurosci 1(4):279–285

    Article  CAS  PubMed  Google Scholar 

  • Rosenmund C, Stevens CF (1996) Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16(6):1197–1207

    Article  CAS  PubMed  Google Scholar 

  • Salin PA, Scanziani M, Malenka RC, Nicoll RA (1996) Distinct short-term plasticity at two excitatory synapses in the hippocampus. Proc Natl Acad Sci U S A 93(23):13304–13309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savanthrapadian S, Meyer T, Elgueta C, Booker SA, Vida I, Bartos M (2014) Synaptic properties of som-and cck-expressing cells in dentate gyrus interneuron networks. J Neurosci 34(24):8197–8209

    Article  PubMed  Google Scholar 

  • Sedlacek M, Brenowitz SD (2014) Cell-type specific short-term plasticity at auditory nerve synapses controls feed-forward inhibition in the dorsal cochlear nucleus. Front Neural Circuits 8:78. doi:10.3389/fncir.2014.00078

    Article  PubMed  PubMed Central  Google Scholar 

  • Sims RE, Woodhall GL, Wilson CL, Stanford IM (2008) Functional characterization of gabaergic pallido-pallidal and striatopallidal synapses in the rat globus pallidus in vitro. Eur J Neurosci 28(12):2401–2408

    Article  PubMed  Google Scholar 

  • Sirota A, Montgomery S, Fujisawa S, Isomura Y, Zugaro M, Buzsáki G (2008) Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron 60(4):683–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens CF, Wesseling JF (1999) Augmentation is a potentiation of the exocytotic process. Neuron 22(1):139–146

    Article  CAS  PubMed  Google Scholar 

  • Straiker A, Mackie K (2009) Cannabinoid signaling in inhibitory autaptic hippocampal neurons. Neuroscience 163(1):190–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun HY, Bartley AF, Dobrunz LE (2009) Calcium-permeable presynaptic kainate receptors involved in excitatory short-term facilitation onto somatostatin interneurons during natural stimulus patterns. J Neurophysiol 101(2):1043–1055

    Article  CAS  PubMed  Google Scholar 

  • Taschenberger H, Scheuss V, Neher E (2005) Release kinetics, quantal parameters and their modulation during short-term depression at a developing synapse in the rat CNS. J Physiol 568(2):513–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tecuapetla F, Carrillo-Reid L, Bargas J, Galarraga E (2007) Dopaminergic modulation of short-term synaptic plasticity at striatal inhibitory synapses. Proc Natl Acad Sci U S A 104(24):10,258–10,263

    Article  CAS  Google Scholar 

  • Thomson A, Deuchars J, West D (1993) Single axon excitatory postsynaptic potentials in neocortical interneurons exhibit pronounced paired pulse facilitation. Neuroscience 54(2):347–360

    Article  CAS  PubMed  Google Scholar 

  • Thomson AM, Bannister AP, Mercer A, Morris OT (2002a) Target and temporal pattern selection at neocortical synapses. Philos Trans R Soc Lond Ser B Biol Sci 357(1428):1781–1791

    Article  Google Scholar 

  • Thomson AM, West DC, Wang Y, Bannister AP (2002b) Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2–5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. Cereb Cortex 12(9):936–953

    Article  PubMed  Google Scholar 

  • Traub RD, Bibbig A, LeBeau FE, Buhl EH, Whittington MA (2004) Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. Annu Rev Neurosci 27:247–278

    Article  CAS  PubMed  Google Scholar 

  • Triller A, Choquet D (2005) Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move! Trends Neurosci 28(3):133–139

    Article  CAS  PubMed  Google Scholar 

  • Trommershaüser J, Schneggenburger R, Zippelius A, Neher E (2003) Heterogeneous presynaptic release probabilities: functional relevance for short-term plasticity. Biophys J 84(3):1563–1579

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci U S A 94(2):719–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchigashima M, Narushima M, Fukaya M, Katona I, Kano M, Watanabe M (2007) Subcellular arrangement of molecules for 2-arachidonoyl-glycerol-mediated retrograde signaling and its physiological contribution to synaptic modulation in the striatum. J Neurosci 27(14):3663–3676

    Article  CAS  PubMed  Google Scholar 

  • Van der Kloot W, Molgo J (1993) Facilitation and delayed release at about 0 degree c at the frog neuromuscular junction: effects of calcium chelators, calcium transport inhibitors, and okadaic acid. J Neurophysiol 69(3):717–729

    PubMed  Google Scholar 

  • Wang XJ, Buzsaki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16(20):6402–6413

    CAS  PubMed  Google Scholar 

  • Wang Y, Markram H, Goodman PH, Berger TK, Ma J, Goldman-Rakic PS (2006) Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat Neurosci 9(4):534–542

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, O’Donohue H, Manis P (2011) Short-term plasticity and auditory processing in the ventral cochlear nucleus of normal and hearing-impaired animals. Hear Res 279(1):131–139

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Rost BR, Camacho-Pérez M, Davis MW, Sohl-Kielczynski B, Rosenmund C, Jorgensen EM (2013) Ultrafast endocytosis at mouse hippocampal synapses. Nature 504(7479):242–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittington MA, Traub RD (2003) Interneuron diversity series: inhibitory interneurons and network oscillations in vitro. Trends Neurosci 26(12):676–682

    Article  CAS  PubMed  Google Scholar 

  • te Woerd ES, Oostenveld R, de Lange FP, Praamstra P (2014) A shift from prospective to reactive modulation of beta-band oscillations in parkinson’s disease. NeuroImage 100:507–519

    Article  Google Scholar 

  • Wu N, Hsiao CF, Chandler SH (2001) Membrane resonance and subthreshold membrane oscillations in mesencephalic v neurons: participants in burst generation. J Neurosci 21(11):3729–3739

    CAS  PubMed  Google Scholar 

  • Xu J, Wu LG (2005) The decrease in the presynaptic calcium current is a major cause of short-term depression at a calyx-type synapse. Neuron 46(4):633–645

    Article  CAS  PubMed  Google Scholar 

  • Zucker RS (1989) Short-term synaptic plasticity. Annu Rev Neurosci 12(1):13–31

    Article  CAS  PubMed  Google Scholar 

  • Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64(1):355–405

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Antonio Laville, Dagoberto Tapia for technical support and advice and to Dr. Claudia Rivera for animal care. Acquisition software was made by Dr. Luis Carrillo-Reid and María Itze Lemus. Experiments were supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT-México) Grant Fronteras de la Ciencia 57 (to J. Bargas and Marco Arieli Herrera-Valdez), the fellowship 290847 (to M.A. Herrera-Valdez), by Dirección General de Asuntos del Personal Académico, UNAM Grants IN-201914 and IN-205610 (to E. Galarraga and J. Bargas, respectively) Marco Arieli Herrera-Valdez thanks the Mathematics Institute at UNAM for the support provided during the initial drafting stages of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Janet Barroso-Flores or Marco A. Herrera-Valdez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Barroso-Flores, J., Herrera-Valdez, M.A., Galarraga, E., Bargas, J. (2017). Models of Short-Term Synaptic Plasticity. In: von Bernhardi, R., Eugenín, J., Muller, K. (eds) The Plastic Brain. Advances in Experimental Medicine and Biology, vol 1015. Springer, Cham. https://doi.org/10.1007/978-3-319-62817-2_3

Download citation

Publish with us

Policies and ethics