Skip to main content
Log in

Iron and sulfate reduction in the sediments of acidic mine lake 116 (Brandenburg, Germany): Rates and geochemical evaluation

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

A combination of rate measurements of iron(III)oxide and sulfate reduction, thermodynamic data, and pore-water and solid phase analyses was used to evaluate the relative significance of iron and sulfate reduction in the sediments of an acidic strip mining lake (Lake 116, Brandenburg, Germany). The rate of sulfate reduction was determined using a 35S-radiotracer method. Rates of iron turnover were quantified by mass balances based on pore-water concentration profiles. The differences in Gibbs free energy yield from reduction of iron and sulfate and from methanogenesis were calculated from individual redox couples and concentrations of reactants to account for the influence of high Fe2+ concentrations and differing mineral phases. Integrated (O-20 cm) mean rates of sulfate reduction were 1.2 (pelagial), respectively 5.2 (littoral) mmol (m2d)-1. Based on electron equivalents, the estimated iron reduction rates reached between about 50 % (pelagial) and 75 % (littoral) of the sulfate reduction rates. Compared to conditions usually assumed in the literature, in the sediments Gibbs free energy advantage of iron reduction over sulfate reduction was reduced frmm +11 KJeq-1 to a range of about +7 KJeq-1 (ferrihydrite, "reactive iron") to -6 KJeq-1 (goethite). This indicates that iron reduction was thermodynamically favored to sulfate reduction only if amorphous iron(III)oxides were available and is in accordance to the high competitiveness of sulfate reducers in the sediment. While total iron concentration in the sediments was high (up to 80% of the dryweight), reactive iron only accounted for 11-38% and was absolutely and relatively diminished in the zone of iron reduction. Pore-water concentration gradients and 137CS profiles indicated that little or no bioturbation occurred in the sediments, probably inhibiting the renewal of reactive iron. We further hypothesize that the reactivity of the iron oxide surfaces was reduced due to adsorption of DOM, suggested by IR spectra of the DOM and by a surface coverage estimate using literature data. Pelagial and littoral sediments displayed different dynamics. At the littoral relative iron reduction rate estimates were higher, iron sulfides were not accumulated and residence times of iron oxides were short compared to the pelagial. At the littoral site reoxidation of iron sulfides probably resulted in the renewal of reactive iron(III)oxides, possibly allowing for higher relative rates of iron reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aller, R. C. and Rude, P. D.: 1988, Geuchim. Cosmochim. Acta 52, 751-765.

    Google Scholar 

  • Berner, R. A.: 1980, Early diagenesis: A theoretical approach, Princeton University Press, Princeton

    Google Scholar 

  • Bigham, J. M., Schwertmann, U. Traina, S. J., Winland, R. I. and M, Wolf: 1996, Geochim. Cosmochim. Acta 60, 2111-2121.

    Google Scholar 

  • Canfield, D. E.: 1989, Genchim. Cosmochim. Acta 53 , 619-632.

    Google Scholar 

  • Canfiel, D. E.: 1993, in Wollast, R., Mackenzie, F. T. and Chou, L. (ed.): Interactions of C, N, P and S Biogeochemical cycles and Global Change, Springer-Verlag, Berlin.

    Google Scholar 

  • Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M. and Berner, R. A.: 1986, Chem. Geol. 54, 149-155.

    Google Scholar 

  • Canfield, D. E., Jørgensen, B. B., Fossing, H., Glud, R., Gundersen, J., Ramsing, N. B., Thamdrup, B., Hansen, J. W., Nielsen, L. P. and Hall, P. O. J.: 1993a., Marine Geology 113, 27-40.

    Google Scholar 

  • Canfield, D. E., Thamdrup, B. and Hansen, J. E: 1993b, Geochim. Cosmochim. Acta 57, 3867-3883.

    Google Scholar 

  • Canfield, D. E. and Thamdrup, B.: 1994, Science 266, 1973-1975.

    Google Scholar 

  • Chanton, J. P., Martens, C. S. and Goldhaber, M. B.: 1987. Geochim. Cosmochim. Acta 51, 1187-1199.

    Google Scholar 

  • Elsgaard, L. and Jøgensen, B. B.: 1992, Geochim. Cosmochim. Acta 56, 2425-2435.

    Google Scholar 

  • Fischer, W. R.: 1983, Z. Pflanzenemaehr. Bodenk. 146, 611-622.

    Google Scholar 

  • Fossing, H. and Jørgensen, B. B.: 1989, Biogeochemistry 8, 205-222.

    Google Scholar 

  • Fossing, H. and Jørgensen, B. B.: 1990, Geochim. Cosmochim. Acta 54, 2731-2742.

    Google Scholar 

  • Frevert, T.: 1983, Hydrochemisches Grundpraktikum, UTB Birkhäuser, Basel

    Google Scholar 

  • Frevert, T.: 1984, Schweiz. Z.Hydrol. 46/2, 269-290.

    Google Scholar 

  • Furrer, G. and Wehrli, B.: 1996. Geochim. Cosmochim. Acta 60, 2333-2346.

    Google Scholar 

  • Grautham, M. C., Dove, P. M. and Christina, T. J.: 1997, Geochim Cosmochim. Acta 61, 4467-4477.

    Google Scholar 

  • Gu, B., Selmitt, J., Chen, Z., Liang, L., and McCarthy, J. F.: 1994, Environ. Sci. Technol. 28, 38-46.

    Google Scholar 

  • Guggenberger, G. and Zech, W.: 1993, J, Environ. Qual. 21, 643-653.

    Google Scholar 

  • Herlihy, A. T. and Mills, A. L.: 1985, Appl. Environ. Microbiol. 49, 179-186.

    Google Scholar 

  • Herlihy, A. T., Mills, A, L., Hornberger, G. M. and Bruckner, A. E.: 1987, Water Resources Research 23, 287-292.

    Google Scholar 

  • Hesslein, R, H,: 1976, Limnol. Oceanogr. 21, 912-914.

    Google Scholar 

  • Hoehler, T. M., Alperin, M, J., Albert, D. B. and Martens, C. S.: 1994, Global Biogeochem. Cycles 8, 451-463.

    Google Scholar 

  • Ingvorsen, K., Zeikus, J. G. and Brock, T. D.: 1981, Appl. Environ. Microbiol. 42, 1029-1036.

    Google Scholar 

  • Jørgensen, B. B.: 1977, Limnol. Oceanogr. 22, 814-832.

    Google Scholar 

  • Jørgensen, B. B.: 1978, Geomicrobiology Journal 1, 11-47.

    Google Scholar 

  • Kaiser, K., Guggenberger, G., Haumaier, L. and Zech, W.: 1997, European Journal of Soil Science 48, 301-310.

    Google Scholar 

  • Kelly, C. A., Amaral, J. A., Turner, M. A., Rudd, I. W. M., Schindler, D. W. and Stainton, M. P.: 1995 Biogeochemisiry 28, 115-130.

    Google Scholar 

  • Kuivila, K. M. and Murray, J. W.: 1984, Limnol. Oceanogr. 29, 1218-1230.

    Google Scholar 

  • Kuivila, K. M., Murray, J.W., and Devol, A. H.: 1989, Geochim. Cosmochim. Acta 53, 409-416.

    Google Scholar 

  • Laubag (Lansitzer Braunkohle Aktiengesellschaft): 1996, written communication

  • Li, Y. and Gregory, S.: 1973, Geochim. Cosmochim. Acta 38 , 703-714.

    Google Scholar 

  • Lovley, D. R.; 1987, Geomicrobiol. J. 5, 375-399.

    Google Scholar 

  • Lovley, D. R. and Phillips, E.J. P.: 1988, Appl. Environ. Microbiol. 56, 1472-1480.

    Google Scholar 

  • McDuff, R. E. and Ellis, R. A.: 1979, Am. J. Sc. 279, 666-675.

    Google Scholar 

  • McCarthy, P. and Rice, J. A.: 1985, in Aiken, G. R., McKnight, D. M., Wershaw, R. L., and McCarthy, P. (ed.) Humic substances in soil, sediment and water, John Wiley & Sons, New York

    Google Scholar 

  • McKnight, D. M., Bencala, K. E., Zellweger, G. W., Aiken, G. R., Feder, G. L. and Thorn, K. A.: 1992 Environ. Sci. Technol. 26, 1388-1396.

    Google Scholar 

  • Moeslund, L., Thamdrup, B. and Jørgensen, B. B.: 1994, Biogeochemistry 27 , 129-152.

    Google Scholar 

  • Moore, T. R., De Souza, W. and Koprivnjak, J.-F.: 1992, Soil Science 154, 120-129.

    Google Scholar 

  • Muach, J.C., and Ottow, J. C. G.: 1981. Z. Pflanzenernaehr. Bodenk. 145, 66-77.

    Google Scholar 

  • Niemayer, J., Chen, Y. and Bollag, J.-M.: 1992, Soil. Sci. Soc. Am. J. 56, 135-140.

    Google Scholar 

  • Peine, A. and Peiffer, S.: 1996, Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 48, 261-267.

    Google Scholar 

  • Postma, D., and Jacobsen, R.; 1996, Geochim. Cosmochim. Acta 60, 3169-3175.

    Google Scholar 

  • Rowan, J. S., Higgit, D. L. and Wallin, D. E.: 1993, in McManus, J. and Duek, R. W. (ed.): Geomorphology and sedimentology of lakes and reservoirs.55-72, John Wiley and Sons, Chichester

    Google Scholar 

  • Sass, H., Cypionka, H. and Babenzien, H.-D.: 1997, FEMS Microbiology Ecology 22 (1997), 245-255.

    Google Scholar 

  • Sherman, L. A., Baker, L. A., Weir, E.P., and Brezonik, P. L.: 1994, Limnol. Oceanogr. 39, 1155-1171.

    Google Scholar 

  • Sigg, L. and Stumm, W.: 1991, Aqualische Chemie, Teubner Verlag, Stuttgart

    Google Scholar 

  • Smith, R. L. and Klug, M. J.: 1981, Appl. and Environ. Microbiol. 41, 1230-1237.

    Google Scholar 

  • Stumm, W. and Morgan, J.J.: 1996, Aquatic chemistry, John Wiley & Sons, New York

    Google Scholar 

  • Taylor, B. E., Wheeler, M, A, and Nordstrom, D. K.: 1984, Geochim. Cosmochim. Acta 48, 2669-2678

    Google Scholar 

  • Urban, N. R., Sampson, C, J., Brezonik, P. L. and Baker, L. A.: 1995, submitted to Geochim. Cosmochim. Acta

  • Urban, N. R., Baker, L. A. Sherman, L. A. and Brezonik, P. L.; 1994, Limnol. Oceanogr. 39, 797-815.

    Google Scholar 

  • Wallmann, K., Hennies, K., König, K. I., Petersen, W. and Knauth, H.-D.: 1993, Linmol. Oceanogr. 38, 1803-1812.

    Google Scholar 

  • Wang, Y. and Van Cappellen, P.: 1996, Geochim. Cosmochim. Acta 60 , 2993-3014.

    Google Scholar 

  • Wieland, E., Santschi, P. H., Höhener, P. and Sturm, M.: 1993, Geochim. Cosmochim Acta 57, 2959-2979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blodau, C., Hoffmann, S., Peine, A. et al. Iron and sulfate reduction in the sediments of acidic mine lake 116 (Brandenburg, Germany): Rates and geochemical evaluation. Water, Air, & Soil Pollution 108, 249–270 (1998). https://doi.org/10.1023/A:1005108002174

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005108002174

Navigation