Skip to main content
Log in

Interactive Sorption of Metal Ions and Humic Acids onto Mineral Particles

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The sorption of metal ions (Pb2+, Zn2+ and Cu2+) and soil humic acids (HA) from aqueous solutions onto mineral particles (sand, calcite and clay) was investigated using a batch equilibrium system. The sorption reactions in two- component systems (heavy metals-mineral particles and humic acids- mineral particles), as well as interactions in three-component system (heavy metals-humic acids-mineral particles) were examined. Results showed that the presence of humic acids, dissolved or bound onto mineral surfaces, considerably influenced the fixation of heavy metals. The various effects, depending on mineral type, humic concentration and specific metal-ion, were observed in three- component system. Sorption of Cu2+-ions on all minerals studied rapidly increased as the concentration of dissolved HA increased. The amount of Pb2+-ions sorbed on sand slightly decreased, while on kaolin increased between 15 and 20%. Sorption of Zn2+-ions on all minerals studied decreased at pH 4. At pH 5.5 the sorption of Zn2+-ions onto calcite decreased, while on kaolin and sand increased as a function of the humic acid concentration giving the curve with maximum at c(HA) = 2.5 mmol C L-1. At pH 6.5 sorption onto kaolin and sand increased. This effect occurs as a result of the conditional stability constant of Zn-HA complexes increasing at higher pH which in turn promotes the chelation of Zn2+-ions to mineral- bound humic substances. The enhanced sorption of metal ions from the aqueous phase in three-component systems is not only the result of mineral sorption of free metals but also the result of chelation with HA sorbed on the mineral surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Briški, F., Petrovi´c, M., Kašelan-Macan, M. and Sipos, L.: 1994, Biocatalysis 10, 1.

    Google Scholar 

  • Buffle, J., Greter, F. L. and Haerdi, W.: 1977, Anal. Chem. 49, 216.

    Google Scholar 

  • Busenberg, E. and Plumer, L. N.: 1986, in Mumpton, F. A. (ed.), Studies in Diagenesis, p. 139.

  • Comans, R. N. J.: 1987, Wat. Res. 21, 1573.

    Google Scholar 

  • Cowan, C. E., Zachara, J. M. and Resch, C. T.: 1991, Environ. Sci. Technol. 25, 437.

    Google Scholar 

  • Di Toro, D. M., Mahony, J. D., Kirchgraber, P. R., O'Byrne, A. L., Pasquale, L. R. and Piccrilli, D. C.: 1985, Environ. Sci. Technol. 20, 55.

    Google Scholar 

  • Farly, K. J., Dzombak, D. A. and Morel, F. M.: 1985, J. Colloid Interface Sci. 106, 226.

    Google Scholar 

  • Farrah, H. and Pickering, W. F.: 1977, Aust. J. Chem. 30, 1417.

    Google Scholar 

  • Gadde, R. R. and Laitinen, H. A.: 1974, Anal. Chem. 46, 2022.

    Google Scholar 

  • Gagnon, C., Arnac, M. and Brindle, J. R.: 1992, Wat. Res. 26, 1067.

    Google Scholar 

  • Guy, R. D., Chakrabarti, C. L. and Schramm, L. L.: 1975, Can. J. Chem. 53, 661.

    Google Scholar 

  • Hem, J. D. and Duram, W. H.: 1973, J. Amer. Water Works Ass. 65, 562.

    Google Scholar 

  • Hering, H. G. and Morel, F. M. M.: 1988, Environ. Sci. Technol. 22, 1234.

    Google Scholar 

  • Hildebrand, E. E. and Blum, W. E.: 1974, Naturwissenschaften 61, 169.

    Google Scholar 

  • Huang, C. P., Rhoads, E. A. and Hao, O. J.: 1988, Wat. Res. 22, 1001.

    Google Scholar 

  • Kaštelan-Macan, M. and Petrovi´c, M.: 1995, Wat. Sci. Technol. 32, 349.

    Google Scholar 

  • Kašelan-Macan, M. and Petrovi´c, M.: 1996, Wat. Sci. Technol. 34, 259.

    Google Scholar 

  • Kononova, M. M. and Berlachikova, N. P.: 1960, Soviet Soil Sci. 4, 1149.

    Google Scholar 

  • Leppard, G. G., Buffle, J. and Baudat, R.: 1986, Wat. Res. 20, 185.

    Google Scholar 

  • McKeague, L. A., Ross, G. J. and Gamble, D. S.: 1978, in W. C. Mahaney <nt>(ed.)</nt>, Quaternary Soils, Geo Abstracts, Norwich, p. 27.

  • Murphy, E. M., Zachara, J. M. and Smith, S. C.: 1990, Environ. Sci. Technol. 24, 1507.

    Google Scholar 

  • Nyffeler, U. P., Li, Y. H. and Santschi, P. H.: 1984, Geochim. Cosmochim. Acta 48, 1513.

    Google Scholar 

  • Oscik, J.: 1982, Adsorption, Ellis Horwood Ltd., Chichester, p. 42.

    Google Scholar 

  • Rashid, M. A. and King, L. H.: 1970, Geochim. Cosmochim. Acta 34, 193.

    Google Scholar 

  • Rebhun, M., De Smedt, F. and Rwetabula, J.: 1996, Wat. Res. 30, 2027.

    Google Scholar 

  • Schlautman, M. A. and Morgan, J. J.: 1993, Environ. Sci. Technol. 27, 2523.

    Google Scholar 

  • Schnitzer, M. and Kerndorff, H.: 1981, Water, Air, and Soil Pollut. 15, 97.

    Google Scholar 

  • Smith, R. W. and Jenne, E. A.: 1991, Environ. Sci. Technol. 25, 525.

    Google Scholar 

  • Stumm, W., Wehrli, B. and Wieland, E.: 1987, Croat. Chem. Acta 60, 429.

    Google Scholar 

  • Thurman, E. M.: 1986, Organic Geochemistry of Natural Waters, Nijhoff/Junk Publishers, Dordrecht.

    Google Scholar 

  • Tipping, E.: 1981, Geochim. Cosmochim. Acta 45, 191.

    Google Scholar 

  • Van Cappellen, P., Charlet, L., Stumm, W. and Wersin, P.: 1993, Geochim. Cosmochim. Acta 57, 3505.

    Google Scholar 

  • Zhou, J. L., Rowland, S., Fauzi, R., Manotoura, C. and Braven, J.: 1994, Wat. Res. 28, 571.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrović, M., Kaštelan-macan, M. & Horvat, A.J.M. Interactive Sorption of Metal Ions and Humic Acids onto Mineral Particles. Water, Air, & Soil Pollution 111, 41–56 (1999). https://doi.org/10.1023/A:1005084802830

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005084802830

Navigation