Skip to main content
Log in

The Transitional Time Scale from Stochastic to Chaotic Behavior for Solar Activity

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Following the progression of nonlinear dynamical system theory, many authors have used varied methods to calculate the fractal dimension and the largest Lyapunov exponent λ1 of the sunspot numbers and to evaluate the character of the chaotic attractor governing solar activity. These include the Grassberger–Procaccia algorithm, the technique provided by Wolf et al., and the nonlinear forecasting approach based on the method of distinguishing between chaos and measurement errors in time series described by Sugihara and May. In this paper, we use the Grassberger–Procaccia algorithm to estimate the other character of the chaotic attractor. This character is time scale of a transition from high-dimensional or stochastic at shorter times to a low-dimensional chaotic behavior at longer times. We find that the transitional time scale in the monthly mean sunspot numbers is about 8 yr; the low-dimensional chaotic behavior operates at time scales longer than about 8 yr and a high-dimensional or stochastic process operates at time scales shorter than about 8 yr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abarbanel, D. I., Brown, R., Sidorowich J. J., and Tsimring, L. S.: 1993, Rev. Mod. Phys. 65, 1131.

    Google Scholar 

  • Badii, R., Broggi, G., Derighetti, B., Ravani, M., Ciliberto, S., Politi, A., and Rubio, A.: 1988, Phys. Rev. Letters 60, 979.

    Google Scholar 

  • Berry, P. A. M.: 1987, Vistas Astron. 30, 97.

    Google Scholar 

  • Carbonell, M., Oliver, R., and Ballester, J. L.: 1994, Astron. Astrophys. 290, 983.

    Google Scholar 

  • Eddy, J. A.: 1976, Science 192, 1189.

    Google Scholar 

  • Feynman, J. and Gabriel, S. B.: 1990, Solar Phys. 127, 393.

    Google Scholar 

  • Fujisaka, H. and Yamada, T.: 1985, Prog. Theor. Phys. 74, 918.

    Google Scholar 

  • Gizzatullina, S. M., Rukavishnikov, V. D., Ruzmaikin, A. A., and Tavastsherna, K. S.: 1990, Solar Phys. 127, 281.

    Google Scholar 

  • Grassberger, P. and Procaccia, I.: 1983, Physica 9D, 189.

    Google Scholar 

  • Hao B.-L.: 1985, Science 38, 9 (in Chinese).

    Google Scholar 

  • Kontor, N. N.: 1993, Adv. in Space Res. 13(9), 417.

    Google Scholar 

  • Kurths, J. and Ruzmaikin, A.: 1990, Solar Phys. 126, 407.

    Google Scholar 

  • Layden, A. C., Fox, P. A., Howard, J. M., Sarajedini, A., Schatten, K. H., and Sofia, S.: 1991, Solar Phys. 132, 1.

    Google Scholar 

  • McIntosh, P. S.: 1991, Sky Telescope 81, 21.

    Google Scholar 

  • McNish, A. G. and Lincoln, J. V.: 1949, Trans. Am. Geophys. Union 30, 673.

    Google Scholar 

  • Morfill, G. E., Scheingraber, H., Voges, W., and Sonnett, C. P.: 1991, in C. P. Sonnett, M. S. Giampapa, and M. S. Matthews (eds), The Sun in Time, University of Arizona Press, Tucson, p. 30.

    Google Scholar 

  • Mundt, M. D., Maguire II, W. B., and Chase, R. R. P.: 1991, J. Geophys. Res. 96, 1705.

    Google Scholar 

  • Ostryakov, V. M. and Usoskin, I. G.: 1990, Solar Phys. 127, 405.

    Google Scholar 

  • Pomeau, Y. and Manneville, P.: 1980, Commun. Math. Phys. 74, 189.

    Google Scholar 

  • Price, C. P., Prichard, D., and Hogenson, E. A.: 1992, J. Geophys. Res. 97, 19113.

    Google Scholar 

  • Rozelot, J. P.: 1994, Solar Phys. 149, 149.

    Google Scholar 

  • Rozelot, J. P.: 1995, Astron. Astrophys. 297, L45.

    Google Scholar 

  • Ruelle, D.: 1990, Proc. Roy. Soc. London Ser. A427, 241.

    Google Scholar 

  • Smith, L. A.: 1988, Phys. Letters A133, 283.

    Google Scholar 

  • Spiegel, E. A. and Wolf, A.: 1987, in J. R. Buchler and H. Eichhorn (eds), Chaotic Phenomena in Astrophysics, Ann. N.Y. Acad. Sci., New York, p. 55.

    Google Scholar 

  • Sugihara, G. and May, R. M.: 1990, Nature 344, 734.

    Google Scholar 

  • Takens, F.: 1981, in D. A. Rand and L. S. Young (eds), Dynamical Systems and Turbulence, Vol. 898, Lecture Notes in Mathematics, Springer-Verlag, New York, p. 366.

    Google Scholar 

  • Tsonis, A. A. and Elsner, J. B.: 1992, Nature 358, 217.

    Google Scholar 

  • Weiss, N. O.: 1990, Phil. Trans. Roy. Soc. London A330, 617.

    Google Scholar 

  • Weiss, N. O.: 1994, Phil. Trans. Roy. Soc. London A348, 445.

    Google Scholar 

  • Williams, G. E.: 1981, Nature 291, 624.

    Google Scholar 

  • Wilson, R. M.: 1992, Solar Phys. 140, 181.

    Google Scholar 

  • Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, A.: 1985, Physica 16D, 285.

    Google Scholar 

  • Zhang, Q.: 1994, Acta Astron. Sinica 35, 27.

    Google Scholar 

  • Zhang, Q.: 1995, Acta Astrophys. Sinica 15, 91.

    Google Scholar 

  • Zhang, Q.: 1996, Astron. Astrophys. 310, 646.

    Google Scholar 

  • Zhang, Q.: 1997, in K. Marubashi et al. (eds), Solar-Terrestrial Predictions, Proceedings of a Work-shop at Hitachi, Japan, January 23–27, 1996, NOAA, Boulder, Colorado, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Z. The Transitional Time Scale from Stochastic to Chaotic Behavior for Solar Activity. Solar Physics 178, 423–431 (1998). https://doi.org/10.1023/A:1005028120602

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005028120602

Keywords

Navigation