Skip to main content
Log in

RENDERING THREE-DIMENSIONAL SOLAR CORONAL STRUCTURES

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

An X-ray or EUV image of the corona or chromosphere is a 2D representation of an extended 3D complex for which a general inversion process is impossible. A specific model must be incorporated in order to understand the full 3D structure. We approach this problem by modeling a set of optically-thin 3D plasma flux tubes which we render these as synthetic images. The resulting images allow the interpretation of the X-ray/EUV observations to obtain information on (1) the 3D structure of X-ray images, i.e., the geometric structure of the flux tubes, and on (2) the internal structure using specific plasma characteristics, i.e., the physical structure of the flux tubes. The data-analysis technique uses magnetograms to characterize photospheric magnetic fields and extrapolation techniques to form the field lines. Using a new set of software tools, we have generated 3D flux tube structures around these field lines and integrated the plasma emission along the line of sight to obtain a rendered image. A set of individual flux-tube images is selected by a non-negative least-squares technique to provide a match with an observed X-ray image. The scheme minimizes the squares of the differences between the synthesized image and the observed image with a non-negative constraint on the coefficients of the brightness of the individual flux-tube loops. The derived images are used to determine the specific photospheric foot points and physical data, i.e., scaling laws for densities and loop lengths. The development has led to computer efficient integration and display software that is compatible for comparison with observations (e.g., Yohkoh SXT data, NIXT, or EIT). This analysis is important in determining directly the magnetic field configuration, which provides the structure of coronal loops, and indirectly the electric currents or waves, which provide the energy for the heating of the plasma. We have used very simple assumptions (i.e., potential magnetic fields and isothermal corona) to provide an initial test of the techniques before complex models are introduced. We have separated the physical and geometric contributions of the emission for a set of flux tubes and concentrated, in this initial study, on the geometric contributions by making approximations to the physical contributions. The initial results are consistent with the scaling laws derived from the Yohkoh SXT data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Airapetian, V. S. and Smartt, R. N.: 1995, Astrophys. J. 445, 489.

    Article  Google Scholar 

  • Alexander, D. and Katsev, S.: 1996, Solar Phys. 167, 153.

    Google Scholar 

  • Bray, R. J., Cram, L. E., Durrant, C. J., and Loughhead, R. E.: 1991, Plasma Loops in the Solar Corona, Cambridge University Press, Cambridge.

    Google Scholar 

  • Ciaravella, A., Peres, G., Maggio, A., and Serio, S.: 1996, Astron. Astrohys. 306, 553.

    Google Scholar 

  • Culhane, J. L.: 1969, Monthly Notices Roy. Astron. Soc. 144, 379.

    Google Scholar 

  • Davis, H. F.: 1963, Fourier Series and Orthogonal Functions, Allyn and Bacon, Boston, Ch. 2, p. 52.

    Google Scholar 

  • Démoulin, P., van Driel-Geszfelyi, Schmiedder, B., Hénoux, J. C., Csepura, G., and Hagyard, M. J.: 1993, Astron. Astrophys. 271, 292.

    Google Scholar 

  • Démoulin, P., Mandrini, C. H., Rovira, M. G., Hénoux, J. C., and Machado, M. E.: 1994, Solar Phys. 150, 221.

    Google Scholar 

  • Drebin, R. A., Carpenter, L., and Hanrahan, P.: 1988, Computer Graphics 22, 65.

    Google Scholar 

  • Elwert, G.: 1961, J. Geophys Res. 66, 391.

    Google Scholar 

  • Fox, P.: 1908, Astrophys J. 28, 253.

    Google Scholar 

  • Gary, G. A.: 1992, Mem. Soc. Astron. It. 61, 457.

    Google Scholar 

  • Gibson, E. G.: 1973, The Quiet Sun, NASA SP-303, p. 295.

  • Godovnikov, N. V. and Smirnova, E. P.: 1965, Izv. Krymsk. Astrofiz. Obs. 33, 86.

    Google Scholar 

  • Hagyard, M. J.: 1988, Solar Phys. 115, 167.

    Google Scholar 

  • Hagyard, M. J.: 1990, Mem. Soc. Astron. It. 61, 337.

    Google Scholar 

  • Harvey, J. W.: 1966, Evaluation of Solar Magnetograms, Astro-Geophysical Memorandum No. 2, High Altitude Observatory, Boulder, Colorado.

    Google Scholar 

  • Harvey, J. W.: 1969, Ph.D. thesis, University Colorado.

  • Hilderbrand, F. B.: 1952, Methods of Applied Mathematics, Prentice-Hall, Englewood, p. 25.

    Google Scholar 

  • Hoyng, P. and 23 co-authors: 1981, Astrophys. J. 244, L153.

    Article  Google Scholar 

  • Kano, R. and Tsuneta, S.: 1995, Astrophys. J. 454, 934.

    Article  Google Scholar 

  • Kaufman, A.: 1987, Computer Graphics 21, 191.

    Google Scholar 

  • Klimchuk, J. D.: 1995, Bull. Am. Astron. Soc. 27, 996.

    Google Scholar 

  • Klimchuk, J., Lemen, J., Feldman, U., Tsuneta, S., and Uchida, Y.: 1992, Publ. Astron. Soc. Japan 44, L181.

    Google Scholar 

  • Lang, K. R.: 1980, Astrophysical Formulae, Springer-Verlag, New York, p. 46 and p. 456.

    Google Scholar 

  • Lawson, C. L. and Hanson, R. J.: 1974, Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, p. 58.

    Google Scholar 

  • Levine, R. H.: 1975, Solar Phys. 44, 365.

    Google Scholar 

  • Levine, R. H.: 1976, Solar Phys. 46, 159.

    Google Scholar 

  • Levine, R. H.: 1982, Solar Phys. 79, 203.

    Google Scholar 

  • Levine, R. H. and Altschuler, M: 1977, Solar Phys. 36, 345.

    Google Scholar 

  • Maggio, A. and Peres, G.: 1996, Astron. Astrophys. 306, 563.

    Google Scholar 

  • McClymont, A. N. and Mikic, Z.: 1994, Astrophys. J. 422, 899.

    Article  Google Scholar 

  • Mewe, R., Gronenschild, E. H. B. M., and van der Oord, G. H. J.: 1985, Astron. Astrophys. Suppl. Ser. 63, 195.

    Google Scholar 

  • Mewe, R., Lemen, J. R., and van der Oord, G. H. J.: 1986, Astron. Astrophys. Suppl. Ser. 65, 511.

    Google Scholar 

  • Mikic, Z. and McClymont, A. N.: 1994, in K. S. Balasubramaniam and G. Simon (eds.), Solar Active Region Evolution, ASP Conf. Ser. 68, p. 240.

  • Mikic, Z., Barnes, D. C., and Schnack, D. D.: 1988, Astrophys. J. 328, 830.

    Article  Google Scholar 

  • Mikic, Z., Schnack, D. D., and Van Hoven, G.: 1989, Astrophys. J. 338, 1148.

    Article  Google Scholar 

  • Mikic, Z., Schnack, D. D., and Van Hoven, G.: 1990, Astrophys. J. 361, 690.

    Article  Google Scholar 

  • Moore, R. L., Hagyard, M. J., and Davis, J. M.: 1987, Solar Phys. 113, 347.

    Google Scholar 

  • Nakagawa, Y.: 1973, Astron. Astrophys. 27, 95.

    Google Scholar 

  • Nakagawa, Y. and Raadu, M. A.: 1972, Solar Phys. 25, 127.

    Google Scholar 

  • Nakagawa, Y., Raadu, M. A., Billings, D. E., and McNamara, D.: 1971, Solar Phys. 19, 72.

    Google Scholar 

  • Parker, E. N.: 1979, Cosmical Magnetic Fields, Clarendon Press, Oxford, p. 123.

    Google Scholar 

  • Priest, E. R.: 1982, Solar Magnetohydrodynamics, D. Reidel Publ. Co., Dordrecht, Holland, p. 108.

    Google Scholar 

  • Poletto, G. and Kopp, R. A.: 1988, Solar Phys. 116, 163.

    Article  Google Scholar 

  • Poletto, G., Vaiana, G. S., Zombeck, M. V., Krieger, A. S., and Timothy, A. F.: 1975, Solar Phys. 44, 83.

    Google Scholar 

  • Raadu, M. A. and Nakagawa, Y.: 1971, Solar Phys. 20, 64.

    Google Scholar 

  • Reale, F. and Peres, G.: 1995, Astron. Astrophys. 299, 225.

    Google Scholar 

  • Rosner, R., Tucker, W. H., and Vaiana, G. S.: 1978, Astrophys. J. 220, 643.

    Article  Google Scholar 

  • Roumeliotis, G.: 1994, in K. S. Balasubramaniam and G. Simon (eds.), Solar Active Region Evolution, ASP Conf. Ser. 68, p. 240.

  • Rust, D. M.: 1966, Thesis, University of Colorado.

  • Rust, D. M.: 1970, AIAA Observations and Predictions of Solar Activity Conf., Huntsville, AL.

  • Rust, D. M. and Roy, J.-R.: 1971, in R. Howard (ed.), ‘Solar Magnetic Fields’, IAU Symp. 43, 569.

  • Sakurai, T.: 1981, Solar Phys. 69, 343.

    Google Scholar 

  • Sakurai, T.: 1982, Solar Phys. 76, 301.

    Article  Google Scholar 

  • Schmidt, H. U.: 1964, in W. N. Ness (ed.), Solar Flares, AAS-NASA Symp., NASA SP-50, p. 107.

  • Schmidt, H. U.: 1965, Mitt. Astron. Ges., Sept, 89.

  • Serio, S., Peres, G., Vaiana, G. S., Golub, L., and Rosner, R.: 1981, Astrophys. J. 243, 288.

    Article  Google Scholar 

  • Semel, M.: 1967, Ann. Astrophys. 30, 513.

    Google Scholar 

  • Sheeley, N. R., Jr., Bohlin, J. D., Brueckner, G. E., Purcell, J. D., Scherrer, V., and Tousey, K.: 1975, Solar Phys. 40, 103.

    Article  Google Scholar 

  • Shimizu, T.: 1994, in S. Enome and T. Hirayarna (eds.), New Look at the Sun with Emphasis on Advance Observations of Coronal Dynamics and Flares, Nobeyama Radio Observatory, Nagano, p. 61.

    Google Scholar 

  • Shimizu, T., Tsuneta, S., Action, L., Lemen, J., Ogawara, Y., and Uchida, Y.: 1994, Astrophys. J. 422, 906.

    Article  Google Scholar 

  • Smartt, R., Zhang, Z., and Smotko, M. F.: 1993, Solar Phys. 148, 139.

    Google Scholar 

  • Somov, B. V.: 1992, Physical Processes in Solar Flares, Kluwer Academic Publishers, Dordrecht, Holland, p. 15.

    Google Scholar 

  • Tsuneta, S.: 1996, Astrophys. J. 456, L63.

    Google Scholar 

  • Wang, H.: 1992, Solar Phys. 140, 85.

    Google Scholar 

  • Webb, D. F.: 1981, in F. Q. Orrall (ed.), Solar Active Regions, Skylab Solar Workshop III, Colorado Associated Press, Boulder, p. 165.

    Google Scholar 

  • Wellck, R. E. and Nakagawa, Y.: 1973, NCAR Tech. Note TN/STR-87, NCAR, Boulder, CO.

  • Wu, S. T, Chang, H. M., and Hagyard, M. J.: 1985, in M. J. Hagyard (ed.), Measurements of Solar Vector Magnetic Fields, NASA CP-2374, p. 17.

  • Wu, S. T. and Sakurai, T.: 1990, Mem. Soc. Astron. It. 62, 477.

    Google Scholar 

  • Wu, S. T., Sun, M. T., Chang, H. M., Hagyard, M. J., and Gary, G. A.: 1990, Astrophys. J. 362, 698.

    Article  Google Scholar 

  • Yoshida, T. and Ogama, Y.: 1995, Publ. Astron. Soc. Japan 47, L15.

    Google Scholar 

  • Yoshida, T. and Tsuneta, S.: 1996, Astrophys. J. 495, 342.

    Article  Google Scholar 

  • Yoshida, T., Tsuneta, S., Golub, L., Strong, K., and Ogawara, Y.: 1995, Publ. Astron. Soc. Japan 47, L15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gary, G.A. RENDERING THREE-DIMENSIONAL SOLAR CORONAL STRUCTURES. Solar Physics 174, 241–263 (1997). https://doi.org/10.1023/A:1004978630098

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004978630098

Keywords

Navigation