Skip to main content
Log in

THE SIGNAL OF THE 11-YEAR SUNSPOT CYCLE IN THE UPPER TROPOSPHERE-LOWER STRATOSPHERE

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The paper summarizes work by the authors over the past ten years on an apparent signal of the 11-year sunspot cycle in the lower stratosphere-upper troposphere. The signal appears as a basic, consistent pattern in correlations between heights of stratospheric constant-pressure levels, at least as high as 25 km, and the solar cycle in which the highest correlations are in the subtropics.

The variation of the stratospheric heights in phase with the sunspot cycle are – in the areas of high correlations between the two – associated with temperature variations on the same time scale in the middle and upper troposphere. The spatial distribution of the correlations suggests that the year-to-year changes in tropical and subtropical vertical motions contain a component on the time scale of the solar cycle.

In January and February the correlations with the sunspot cycle are smallest. The smallness of the correlations is owing to the fact that they are different in the east and west years of the quasi-biennial oscillation in the equatorial stratospheric winds. The correlation pattern in the east years is the same as in the other seasons and is statistically significant. In the west years the correlations are insignificant outside the arctic, and the positive correlation in the arctic in these years is related to the fact that major midwinter breakdowns of the cyclonic vortex in the west years so far have happened only at maxima in the solar cycle.

Until recently reliable continuous series of analyses of the stratosphere were not available for the southern hemisphere. The U.S. National Centers for Environmental Prediction and the National Center for Atmospheric Research have now, however, issued a 23-year series of re-analyzed global data which has made it possible to detect the solar signal on the southern hemisphere. It turns out to be almost the same as that on the northern hemisphere.

The correlations between total column ozone and the sunspot cycle are lowest in the equatorial regions, where ozone is produced, and in the subpolar regions, where the largest amounts are found. In the annual mean the largest correlations lie between 5° lat. and 30° lat. We suggest that this distribution of correlations is due to the fact that the subtropical heights of the constant-pressure surfaces in the ozone layer are higher in maximum than in minimum years of the sunspot cycle, and that the higher subtropical heights in the solar maxima depress the poleward transport of ozone through the subtropics and thus create an abundance of ozone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balachandran, N. K. and Rind, D.: 1995, J. Clim. 8, 2058.

    Google Scholar 

  • Haigh, J. D.: 1996, Science 272, 981.

    Google Scholar 

  • Hurrell, J. W, van Loon, H., and Shea, D. J.: 1997, Met. Monogr. AMS, in press.

  • Kodera, K., Yamazaki, M., Chiba, M., and Shibata, K.: 1990, Geophys. Res. Lett. 17, 1263.

    Google Scholar 

  • Labitzke, K.: 1987, Geophys. Res. Lett. 14, 535.

    Google Scholar 

  • Labitzke, K. and van Loon, H.: 1992, J. Clim. 5, 240.

    Google Scholar 

  • Labitzke, K. and van Loon, H.: 1994a, J. Meteor. Soc. Japan 72, 643.

    Google Scholar 

  • Labitzke, K. and van Loon, H.: 1994b, COSPAR Colloq. Ser. 5, 537.

    Google Scholar 

  • Labitzke, K. and van Loon, H.: 1995, Tellus 47A, 275.

    Google Scholar 

  • Labitzke, K. and van Loon, H.: 1997, J. Atmospheric and Solar-Terrest. Phys. 59, 9.

    Google Scholar 

  • Rind, D. and Balachandran, N. K.: 1995, J. Clim. 8, 2080.

    Google Scholar 

  • Salby, M. and Shea, D. J.: 1991, J. Geophys. Res. 95, 22 579.

    Google Scholar 

  • Shea, D. J., van Loon, H., and Labitzke, K.: 1992, NCAR Tech. Note TN-368+STR, 291.

  • Tinsley, B. A. and Heelis, R. A.: 1993, J. Geophys. Res. 98, 10 375.

    Google Scholar 

  • van Loon, H. and Labitzke, K.: 1990, J. Clim. 3, 827.

    Google Scholar 

  • van Loon, H. and Labitzke, K.: 1994, Met. Z. N.F. 3, 259.

    Google Scholar 

  • van Loon, H. and Jenne, R. L.: 1970, J. Atmospheric Sci. 27, 701.

    Google Scholar 

  • van Loon, H., Labitzke, K., and Jenne, R. L.: 1973, J. Geophys. Res. 78, 2672.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labitzke, K., van Loon, H. THE SIGNAL OF THE 11-YEAR SUNSPOT CYCLE IN THE UPPER TROPOSPHERE-LOWER STRATOSPHERE. Space Science Reviews 80, 393–410 (1997). https://doi.org/10.1023/A:1004907126955

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004907126955

Keywords

Navigation